Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

> Ligand Dechelation effect on a [Co(tpy)₂]²⁺ Scaffold towards Electro-catalytic Proton and Water Reduction

SUPPORTING INFORMATION

KARUNAMAY MAJEE AND SUMANTA KUMAR PADHI

Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, INDIA, 826 004

Figure S2. IR spectrum of the [Co(4Ql-tpy)₂]Cl₂ complex.

Figure S4a. ¹H NMR spectrum of the ligand 4Ql-tpy in CDCl₃

Figure S4b. ¹H NMR spectrum of the ligand 4Ql-tpy in CDCl₃ (Inset is the interpretation).

-77.24 -76.92 -76.60

Figure S5. ¹³C NMR spectrum of ligand 4Ql-tpy in CDCl₃

Figure S6. ESI-Mass spectrum of ligand 4Ql-tpy in methanol.

Figure S7a. ESI-Mass spectrum of the [Co(4Ql-tpy)₂]Cl₂ complex in methanol.

Figure S7b. ESI-Mass spectrum of the $[Co(4Ql-tpy)_2]Cl_2$ complex in methanol (Top: Observed; Bottom: Simulated).

Figure S8b. ¹H NMR spectrum of [Co(4Ql-tpy)₂](PF₆)₃ complex in DMSO-D₆.

Figure S9. ¹³C NMR spectrum of [Co(4Ql-tpy)₂](PF₆)₃ complex in DMSO-D_{6.}

Figure S10. ESI-Mass spectrum of the [Co(4Ql-tpy)₂](PF₆)₃ complex in acetonitrile.

Figure S11. ESI-Mass spectrum of the [Co(4-N-MeQl-tpy)₂](PF₆)₄ complex in acetonitrile.

Figure S12. The UV-Vis spectrum of (a) ligand 4Ql-tpy $(1.25 \times 10^{-5} \text{ M})$ and (b) [Co(4Ql-tpy)₂]Cl₂ complex $(1.25 \times 10^{-5} \text{ M})$, inset shows the spectra for 1mM complex in methanol.

Figure S13. Change in UV-Vis spectra of [Co(4Ql-tpy)₂]Cl₂ complex in phosphate buffer from pH 1.6-7.0.

Figure S14. Absorbance *vs.* pH of [Co(4Ql-tpy)₂]Cl₂ complex in phosphate buffer from pH 1.62 - 7.0.

Figure S15. Change in UV-Vis spectra of [Co(4Ql-tpy)₂]Cl₂ complex in phosphate buffer from pH 7.0-14.0.

Figure S16. Absorbance *vs.* pH of $[Co(4Ql-tpy)_2]Cl_2$ complex in phosphate buffer from pH 7.0 – 14.0 at 320 nm.

Figure S17. ESI-Mass spectrum of [Co(4Ql-tpy)₂]Cl₂ in pH 7.0 phosphate buffer.

Figure S18. Change in UV-Vis spectra of $[Co(Me4Ql-tpy)_2](PF_6)_4$ complex in phosphate buffer from pH 1.62 to 7.0.

Figure S19. Absorbance *vs.* pH of [Co(Me4Ql-tpy)₂](PF₆)₄ complex in phosphate buffer from pH 1.62 to 7.0 at 220 nm.

Figure S20. ESI-Mass spectum of [Co(4Ql-tpy)₂]Cl₂ in pH 2.8 phosphate buffer.

Figure S21. ESI-Mass spectrum of $[Co(4Ql-tpy)_2]Cl_2$ in presence of 30 equivalent of acetic acid.

Figure S22. CV of 1 mM 4Ql-tpy in DMF containing 0.1 M TBAP as supporting electrolyte and at a scan rate of 100 mV s⁻¹ under inert atmosphere.

Figure S23. CV of 1 mM $[Co^{II}(4Ql-tpy)_2]^{2+}$ and $[Co^{III}(4Ql-tpy)_2]^{3+}$ in DMF containing 0.1 M TBAP as supporting electrolyte at a scan rate of 100 mV s⁻¹ under N₂ atmosphere.

Figure S24. CV of 1 mM $[Co(4Ql-tpy)_2]Cl_2$ in 95:5(v/v) DMF/H₂O with 0.1M TBAP and an electrochemical potential scan rate of 100 mV s⁻¹ in N₂ atmosphere (black) and CV after addition of 2 equiv. of AcOH (red).

Figure S25. CV of 0.75 mM $[Co(4Ql-tpy)_2]Cl_2$ in the presence of varying concentrations of acetic acid in DMF/H₂O (95:5, v/v) with 0.1 M TBAP at a scan rate of 100 mV s⁻¹ under inert atmosphere.

Figure S26. CV of 1 mM $[Co(4Ql-tpy)_2]Cl_2$ with varying concentration of AcOH in DMF/H₂O (95:5, v/v) and the supporting electrolyte TBAP (0.1 M) at a scan rate of 100 mV s⁻¹ under N₂ atmosphere (left). Right side CV shows the saturation after 28 equivalent of acetic acid.

Figure S27. CV of 1.25 mM $[Co(4Ql-tpy)_2]Cl_2$ in the presence of varying concentrations of acetic acid in DMF/H₂O (95:5, v/v) with 0.1 M TBAP at a scan rate of 100 mV s⁻¹ under inert atmosphere.

Figure S28. Cyclic voltammograms of 1mM [Co(4Ql-tpy)₂]Cl₂ in presence of 0.1 M TBAP in DMF/H₂O (95:5, v/v) at varying scan rates from 25 - 400 mV/s.

Figure S29. Plot of $i_p vs. v^{1/2}$ with linear fitted slope 3.2 x10⁻⁵ AV^{-1/2} s^{1/2}.

Figure S30. Dependence of catalytic current, i_c (a) on complex concentration in presence of 20 equivalent of acetic acid. (b) On acetic acid concentration for a catalyst concentration of 1.0 mM in potential scan rate of 100 mV s⁻¹.

Figure S31. Dependence of i_c/i_p , on [AcOH] in three different concentrations of the catalyst (0.75 mM, 1.0 mM and 1.25 mM).

Figure S32. The linear sweep voltammogram (LSV) of $[Co(tpy)_2]Cl_2$ (black) and $[Co(4Ql-tpy)_2]Cl_2$ (red) with the addition of 26 equiv. AcOH.

Figure S33. Cyclic voltammogram 1mM [Co(4Ql-tpy)₂]Cl₂ in 0.1 M phosphate buffer at pH 7.0 using three electrode system in nitrogen atmosphere.

Figure S34. Cyclic voltammogram of blank (black), $CoCl_2.6H_2O$ (red) and 1mM complex (blue) in phosphate buffer of pH 7.0.

Figure S35. CV of $[Co(4Ql-tpy)_2]Cl_2$ at various concentration (0.25 mM to 1.5 mM) at pH 7.0 in phosphate buffer (0.1 M) and v = 100 mV s⁻¹.

Figure S36. Variation of catalytic current (i_c) with varying concentration of catalyst [Co(4Ql-tpy)₂]Cl₂.

Figure S37. Variation of catalytic current (i_c) of catalyst [Co(4Ql-tpy)₂]Cl₂ with variation of pH.

Figure S38. Charge build up during the time of electrolysis of 5×10^{-5} M [Co(4Ql-tpy)₂]Cl₂ in 0.1 M phosphate buffer of pH 7.0 with varying potential from -1.1 V to -1.5 V *vs.* SCE.

Figure S39. Charge build up during the time of electrolysis of 5×10^{-5} M [Co(4Ql-tpy)₂]Cl₂ in 0.1 M phosphate buffer with varying of pH 7.0 (pH 4.0 to pH 7.0) at potential of -1.2 V *vs*. SCE.

Figure S40. Linear sweep voltammogram of 1 mM $[Co(4Ql-tpy)_2]Cl_2$ (black) and $[Co(tpy)_2]Cl_2$ in phosphate buffer at pH 7.0.

Figure S41. Change in DPV of [Co(4Ql-tpy)₂]Cl₂ in Britton–Robinson buffer.

Figure S42. Time dependent cyclic voltammogram of [Co(4Ql-tpy)₂]Cl₂ complex (1 mM) in DMF/H₂O (95:5, v/v).

Figure S43. Time dependent UV-Vis spectra of $[Co(4Ql-tpy)_2]Cl_2$ complex (0.75 mM) in DMF/H₂O (95:5, v/v).

Figure S44. Time dependent UV-Vis spectra of $[Co(4Ql-tpy)_2]Cl_2$ (0.75 mM) in DMF/H₂O (95:5, v/v) in presence of 28 equiv. AcOH.

Figure S45. UV-Vis spectra of the 5×10^{-5} M [Co(4Ql-tpy)₂]Cl₂ complex before and after the electrolysis (electrolysis at -1.6 V *vs.* SCE for 2 h) in presence of 28 equiv. AcOH in 95:5 DMF/H₂O containing 0.1 M TBAP as a supporting electrolyte.

Figure S46. FESEM image of glassy carbon plate (a) before bulk electrolysis and (c) after bulk electrolysis of 2 hours at -1.6 V *vs*. SCE. EDX data of glassy carbon plate (b) before bulk electrolysis and (d) after bulk electrolysis of 2 hours at -1.6 V *vs*. SCE. Electrolysis condition: $0.05 \text{mM} [\text{Co}(4\text{Ql-tpy})_2]\text{Cl}_2$ with 28 equivalent acetic acid in DMF/H₂O (95:5, v/v) using 0.1 M TBAP as supporting electrolyte.

Table S1. Crystal data and structure refinement for [Co(4Ql-tpy)2]Cl2	
Identification code	CCDC 1863596
Empirical formula	$C_{96}H_{76}Cl_4Co_2N_{16}O_7$
Formula weight	1825.39
Temperature/K	293.0
Crystal system	triclinic
Space group	P ĩ
a/Å	8.9073(6)
b/Å	12.9124(4)
c/Å	21.2304(6)
α/°	94.018(3)
β/°	100.907(4)
γ/°	100.487(4)
Volume/Å ³	2343.79(19)
Ζ	1
$\rho_{\text{calc}} g/cm^3$	1.293
µ/mm ⁻¹	0.530
F(000)	942.0
Crystal size/mm ³	$0.21 \times 0.19 \times 0.16$
Radiation	$MoK_{\alpha} (\lambda = 0.71073)$
2Θ range for data collection/°	3.22 to 54.9
Index ranges	$-11 \le h \le 11, -16 \le k \le 16, 0 \le l \le 27$
Reflections collected	10724
Independent reflections	10724 [$R_{int} = 0.0000, R_{sigma} = 0.0037$]
Data/restraints/parameters	10724/0/575
Goodness-of-fit on F ²	1.090
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0695, wR_2 = 0.2005$
Final R indexes [all data]	$R_1 = 0.0696, wR_2 = 0.2006$
Largest diff. peak/hole / e Å ⁻³	0.67/-0.75