Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

A multi stimuli responsive behavior material with rhodamine B and carbazole groups

Xiaoju Wang,^{a1} Lixia Guo,^{b1} Liheng Feng^{b*}

^oInstitute of Molecular Science, Chemical Biology and Molecular Engineering, Laboratory of Education Ministry, Shanxi University, Taiyuan 030006, PR China; ^bSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P.R. China. *E-mail: lhfeng@sxu.edu.cn, Tel:86351-7011588, Fax:86351-7011688

Fig. S1 The ¹H NMR of CAXO in chloroform

Fig. S2 The ¹³C NMR of CAXO in chloroform

Fig.S3 The UV-Vis absorption and fluorescence emission spectra of CAXO in CH₂Cl₂.

Fig.S4 The fluorescence spectra of CAXO with the increase of solvent polarity.

Fig.S5 The UV-Vis absorption spectra of CAXO in different polar solvents.

Fig.S6 TGA thermogram of CAXO with a heating rate of 5 °C/min under nitrogen atmosphere and DSC.

Fig.S7 Cyclic voltammogram of CAXO. The supporting electrolyte was 0.10 mol/L Bu_4NCIO_4 in acetonitrile and the scan rate was 0.10 V/s.

Fig.S8 The absorption and emission spectra corresponding to color change by Cu(II) and EDTA, respectively. The concentration of CAXO in acetonitrile was 3×10^{-5} mol/L, and the amount of EDTA added was 10 times the equivalent of Cu(II).

Fig.S9 Job-plot curve of CAXO with Cu(II) in $CHCl_3$. The total concentration of CAXO and Cu(II) were 3.0×10^{-5} mol/L, respectively.

Fig.S10 ESI-MS spectrum of reaction between CAXO with Cu(II).

Fig.S11 The UV-vis absorption and fluorescence emission spectra of CAXO in $CHCl_3$ solution, in the present of metal ions and under UV light irradiation, respectively.

Fig.S12 the absorption spectra of CAXO-Cu(II) in different polar solvents.

Fig.S13 The fluorescence lifetime decay curve of CAXO, CAXO with Cu(II) and CAXO under UV in CHCl₃.

Fig. S14 The absorption spectrum by theoretical calculation, in chloroform using G09 program package. The molecular orbital were calculated by TD-DFT, with the hybrid B3LYP functional and the 6-31G (d,p) basis set.

Fig. S15 The¹³C NMR of CAXO, CAXO with Cu(II) and CAXO under UV in CHCl₃, respectively.

Fig. S16 Fluorescence emission and electroluminescence spectra of CAXO in solution and different voltages, respectively.

Fig .S17 CIE chromaticity diagram of CAXO before and after interaction with ions, electrons and photons, respectively.