Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information

Facile synthesis of porous carbon materials with extra high nitrogen

content for supercapacitor electrodes

Yun Liu,^a Xiaojing Hao,^b Likui Wang,^{*a} Yingcong Xu,^a Jing Liu,^a Xiaoning Tian,^{*b} Bolong Yao^{*a}

Fig. S1 SEM images of (a) PNCB-400, (b) PNCB-500, (c) PNCB-550, (d) PNCB-600.

Fig. S2 SEM images of (a) PNCT-400, (b) PNCT-500, (c) PNCT-550, (d) PNCT-600.

Fig. S3 GCD curves of PNCB-400 (a), PNCB-500 (b), PNCB-550 (c), PNCB-600 (d) at different current densities.

Fig. S4 GCD curves of PNCT-400 (a), PNCT-500 (b), PNCT-550 (c), PNCT-600 (d) at different current densities.

Fig. S5 Ragone plot of specific capacitance of other carbon materials with different nitrogen content at a current density of 1 A g^{-1} .

Materials	N content (wt%)	Electrolyte	Capacitance(F g ⁻¹)
[1]	0.98	H ₂ SO ₄	307
[2]	1.86	КОН	282
[3]	2.87	КОН	249
[4]	4.74	КОН	340
[5]	5.86	КОН	326
[6]	5.17	H_2SO_4	290
[7]	5.94	КОН	228
[8]	7.24	H_2SO_4	345
[9]	7.72	КОН	293
[10]	8.27	КОН	210
[11]	10.89	H_2SO_4	235
[12]	11.3	КОН	318
[13]	17.82	H_2SO_4	426

Table S1 Specific capacitance of other carbon materials with different nitrogen content at a current density of 1 A g^{-1} reported in the literature.

Fig. S6 CV curves of PNCB-400 (a), PNCB-500 (b), PNCB-550 (c), PNCB-600 (d) at different scan rates.

Fig. S7 CV curves of PNCT-400 (a), PNCT-500 (b), PNCT-550 (c), PNCT-600 (d) at different scan rates.

Fig. S8 GCD curves of PNCP-400 (a), PNCP-450 (b), PNCP-500 (c), PNCP-550 (d), PNCP-600 (d) at different current densities. Specific capacitance of PPD-T (f) prepared at different carbonized temperatures.

Fig. S9 (a) GCD curves of the pure carbon material YP-50F at different current densities. From the GCD curves, it could be extracted that the specific capacitances are 152.8 F/g, 149 F/g, 146.7 F/g, 141.6 F/g and 131.6 F/g for charge-discharge current density of 0.2 A/g, 0.5 A/g, 1 A/g, 2 A/g and 5 A/g, respectively.

Current	IR ,	Discharge	Specific	Energy	Power
Density	Drop	Time	Capacitance	Density	Density
(A g ⁻¹)	(V)	(s)	(F g⁻¹)	(Wh kg ⁻¹)	(W kg ⁻¹)
0.2	0.034	700.82	841	12.94	66.53
0.5	0.079	218.41	703	9.43	155.43
1	0.201	53.71	430	3.72	249.62
2	0.143	46.44	333	3.59	277.92
5	0.367	1.50	90	0.35	829.22

Table S2. The energy density and power density extracted from the two-electrodesymmetrical supercapacitor with PNCB-450

References

[1] F. Hao, L. Li, X. H. Zhan and J. Chen, *Mater. Res. Bull.*, 2015, 66, 88–95.

[2] H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang and J. W. Choi, *Nano Lett.*, 2011, **11**, 2472–2477.

[3] H. Peng, G. F. Ma, K. J. Sun, J. J. Mu and Z. Q. Lei, *J. Mater. Chem. A*, 2014, **2**, 17297–17301.

[4] W. J. Qian, F. X. Sun, Y. H. Xu, L. H. Qiu, C. H. Liu, S. D. Wang and F. Yan, *Energy Environ. Sci.*, 2014, **7**, 379–386.

[5] H. L. Guo, P. Su, X. F. Kang and S. K. Ning, J. Mater. Chem. A, 2013, 1, 2248–2255.

[6] V. H. Pham, T. D. Nguyen-Phan, J. Jang, T. D. T. Vu, Y. J. Lee, I. K. Song, E. W. Shin and J. S. Chung, *RSC Adv.*, 2014, **4**, 22455–22462.

[7] D. Z. Zhu, Y. W. Wang, L. H. Gan, M. X. Liu, K. Cheng, Y. H. Zhao, X. X. Deng and D.
M. Sun, *Electrochim. Acta*, 2015, **158**, 166–174.

[8] R. Q. Xu, J. Q. Wei, F. M. Guo, X. Cui, T. Y. Zhang, H. W. Zhu, K. L. Wang and D. H.
Wu, RSC Adv, 2015, 5, 22015-22021.

[9] L. Sun, C. G. Tian, Y. Fu, Y. Yang, J. Yin, L. Wang and H. G. Fu, *Chem. Eur. J.*, 2014, 20, 564–574.

[10] Z. Li, Z. W. Xu, X. H. Tan, H. L. Wang, C. M. B. Holt, T. Stephenson, B. C. Olsen and
D. Mitlin, *Energy Environ. Sci.*, 2013, 6, 871–878.

[11] L. M. Li, E. H. Liu, J. Li, Y. J. Yang, H. J. Shen, Z. Z. Huang, X. X. Xiang and W. Li, *J. Power Sources*, 2010, **195**, 1516–1521.

[12] Y. Y. Yin, R. Y. Li, Z. J. Li, J. K. Liu, Z. G. Gu and G. L. Wang, *Electrochim. Acta*, 2014, 125, 330–337.

[13] C. Lu, D. X. Wang, J. J. Zhao, S. Han and W. Chen, *Adv. Funct. Mater*, 2017, **27**, 1606219.