Dynamic simulation of liquid molecular nanoclusters. Structure, stability and quantification of internal (pseudo)symmetries

Angelo Gavezzotti*,a and Leonardo Lo Prestia,b,c

* To whom correspondence should be addressed: angelo.gavezzotti@unimi.it

^a Department of Chemistry, University of Milano, via Golgi 19, 20133 Milano, Italy

^b Istituto di Scienze e Tecnologie Molecolari, Italian CNR, Via Golgi 19 I-20133 Milano (Italy)

^c Centre for Materials Crystallography, Århus University, Langelandsgade 140, DK-8000 Århus C. (Denmark)

Electronic Supporting Information

S1. Force Field parameters

See the Users' Manual for full details (<u>http://www.angelogavezzotti.it/Public/main2.htm</u>).

S1.1 Benzene

12 1 2 2 3 4 5 6 1	18 1 2 3 4 5 6 1 1 2 2 3 3 4 4 5 5 6 6 0	1 1 2 3 5 4 1 2 3 4 5 6 0	#BE 12 3 4 5 6 7 8 9 10 11 12 0 0 83.
nto 2 3 3 4 4 5 5 6 5 1 1 2	nbe 2 3 4 5 6 1 2 6 1 3 2 4 3 5 4 6 1 5 4 6 1 5 4 6 1 5 4 6 1 5 4 6 1 5 4 6 1 2 6 1 2 6 1 5 6 6 1 5 6 6 1 2 6 6 1 5 6 6 1 5 6 6 1 2 6 6 1 5 6 6 1 2 6 6 1 5 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 1 5 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 6 1 5 6 6 6 1 5 6 6 6 1 5 6 6 6 6	2 6 3 4 6 5 7 8 9 10 11 12 nst	ENZNE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
rs-u 4 1 5 1 6 1 1 1 2 1 3 1	nd-u 3 4 5 6 1 2 8 12 7 9 8 10 9 11 10 12 7 11 nd-v	1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0	99 Mc 00000 00000 00000 00000 00000 00000 0000
.00.0 .00.0 .00.0 .00.0 .00.0 .00.0	120. 120. 120. 120. 120. 120. 120. 120.	90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 4 90 3 90 3 90 3 90 3 90 3 90 3 90 3 90 3 90 3 90 3 90 3 90 3 90 3 90 3 90 3 90 3 90 3 90 3 90 <td< td=""><td>vlecul 1.0 -0.2 -1.3 -1.0 0.2 1.3 1.8 -0.5 -2.3 -1.8 0.5 2.3 volu-u</td></td<>	vlecul 1.0 -0.2 -1.3 -1.0 0.2 1.3 1.8 -0.5 -2.3 -1.8 0.5 2.3 volu-u
-1. -1. -1. -1. -1.	00 00 00 00 00 00 00 00 00 00 00 00 00	500 500 500 500 500 500 500 500	ar (29915 2514 2514 2599 29915 2514 2315 3158 5475 3158
$\begin{array}{cccc} .0 & 1.0 \\ .0 & 1.0 \\ .0 & 1.0 \\ .0 & 1.0 \\ .0 & 1.0 \\ .0 & 1.0 \\ .0 & 1.0 \end{array}$	450. 450. 450. 450. 450. 450. 450. 450.		dynami 0 -0. 5 -1. 4 -0. 9 0. 1. 4 0. 7 -1. 3 -2. 5 -0. 7 1. 3 2. 5 0. 1u-v
			cs 937 357 419 937 357 419 666 412 745 666 412 745
			force 78 1 43 1 65 1 79 1 43 1 64 1 42 70 42 70 70
			field 2 -0 2 -0 2 -0 2 -0 2 -0 2 -0 2 -0 2 -0
			file .2878 .2878 .2878 .2878 .2878 .2878 .2878 .2878 .2878 .2878 .2878 .2878


```
200.0
                        -1.0 1.0
2
3
4
5
   3
       1
           8
       2
3
           9
   4
               200.0
                        -1.0 1.0
         10
                       -1.0 1.0
   5
               200.0
   6
       4
         11
               200.0
                       -1.0 1.0
6
       5 12
               200.0
                        -1.0 1.0
   1
  0
      ntors-v
  0
     nlist-u
     nlist-v
10 235.0
  0
 0.410
                    650.0
                              77000.0
  0
     nintra
```

S1.2 Chloroform

#chcl3 Molecular dynamics force field file 5 -0.01997 1 0.53198 0.00000 13 0.5127 1.64971 2 -0.07328 -0.00001 42 -0.2610 3 -0.82117 42 -0.07639-1.46360-0.261042 -0.2610 -0.07639 -0.82116 1.46360 4 5 1.61198 -0.02129 -0.00000 3 0.2703 0 nslav-u 0 ncore-v 0 nslav-v 71.3 0.0 volu-u,volu-v 4 nstr-u H 105 1 2 1.776 2500.0 1.776 1 3 2500.0 2500.0 1 4 1 5 1.080 2500.0 CL 103 0 nstr-v 622233 nbend-u 109.47 450.0 1 3 109.47 1 4 450.0 5 1 109.47 450.0 1 4 109.47 450.0 109.47 109.47 1 5 450.0 4 5 1 450.0 0 nbend-v 0 ntors-u 0 ntors-v 0 nlist-u nlist-v 0 235.0 0.410 650.0 77000.0 0 nintra

S1.3 Methanol

#METHOL99 methanol molecular dynamics force field file 6 0.00000 1.42500 29 0.00000 -1.4250 1 -0.2236 0.2864 2 0.00000 0.00000 0.00000 13 H 103 3 1.01161 -0.37822 0.00000 3 3 0.2826 -0.50580 -0.37822 -0.87608 4 0.2826 3 5 -0.50581 -0.37822 0.87608 5 -0.91620 1.75847 0.00000 6 Ο 0 nslav-u Η 101 ncore-v 105 0 0 nslav-v C 102 35.9 0.0 volu-u,volu-v 5 nstr-u 1 2 1.425 3200.0 2 3 Н 1.080 3000.0 104 2 Η 4 1.080 3000.0 106

C 101

Cl

104

Cl

102

	2	5		1.080	0	3000	.0	
	1	6		1.000	C	2500	.0	
	0	nst	r-v	/				
	7	nbe	nd-	-u				
	2	1	6	110.0	00	400	0.0	
	1	2	3	110.	50	450	0.0	
	1	2	4	110.	50	450	0.0	
	1	2	5	110.	50	450	0.0	
	3	2	4	108.4	42	350	0.0	
	3	2	5	108.4	42	350	0.0	
	4	2	5	108.4	42	350	0.0	
	0	nbe	nd-	-v				
_	1	nto	rs-	-u			_	
6	_1	2	3	2.5	1	.0	3.	0
	0	nto	rs-	-v				
	0	nli	st-	-u				
	0	nli	st-	-V	_			
().41	LO .	2:	35.0	6	50.0		//000.0
	0	nın	tra	a				

S1.4 Pyridine

#pyri	pyridi	ne Molecu	ılar dynamic	s for	ce field	file
11 2 3 4 5 6 7 8 9 10	0.00728 -0.00725 0.00955 -0.01042 0.00809 -0.00579 -0.03378 0.03795 -0.04020 0.03292 -0.02873	-0.03103 1.12280 1.19684 0.03053 -1.16960 -1.14911 2.04725 2.15422 0.05574 -2.10475 -2.09613	$\begin{array}{c} -1.39217\\ -0.70182\\ 0.66470\\ 1.38902\\ 0.71918\\ -0.65389\\ -1.25955\\ 1.16371\\ 2.46831\\ 1.25888\\ -1.17256\end{array}$	18 12 12 12 12 12 2 2 2 2 2 2 2 2 2 2	-0.8290 0.1054 -0.3177 -0.1537 -0.3197 0.1081 0.2700 0.2929 0.2812 0.2933 0.2692	
0 0	nslav-u ncore-v					
0 79. 11 2 2 3 3 4 4 5 5 6 0 16	nslav-v .3 0.0 v nstr-u 2 1.3 6 1.3 3 1.3 7 1.0 4 1.3 8 1.0 5 1.3 9 1.0 6 1.3 10 1.0 11 1.0 nstr-v nbend-u	rolu-u,vol 45 4500. 40 4500. 69 4500. 80 3500. 73 4500. 80 3500. 75 4500. 80 3500. 73 4500. 80 3500. 80 3500.	u-v 0 0 0 0 0 0 0 0 0 0 0 0		H 109 C 10	H 108 C 103
11 11 12 22 33 33 44 45	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	123.98118.01124.28117.86115.66118.72120.64118.01118.97120.51120.64118.30120.85120.51	$\begin{array}{c} 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 450.0\\ 0\\ 50.0\\ 5$		 11	

	5	(51	1	117	.86	4	450.0)	
	6		51	LO	120	.85	4	450.0)	
	0	nbe	end-\	/						
-	11	nto	ors-i	l I						
1	2	3	4	10	0.0	-1	.0	1.0		
2	3	4	5	10	0.0	-1	.0	1.0		
3	4	5	6	10	0.0	-1	.0	1.0		
4	5	6	1	10	0.0	-1	.0	1.0		
5	6	1	2	10	0.0	-1	.0	1.0		
6	1	2	3	10	0.0	-1	.0	1.0		
2	3	1	7	20	0.0	-1	.0	1.0	imp	proper
3	4	2	8	20	0.0	-1	.0	1.0		•
4	5	3	9	20	0.0	-1	.0	1.0		
5	6	4	10	20	0.0	-1	.0	1.0		
6	1	5	11	20	0.0	-1	.0	1.0		
	0	nto	ors-\	/						
	0	n1-	ist-ı	l I						
	0	n1-	ist-\	/						
(0.41	LO	235	5.0	6	50.0		7700	0.0	
	0	nir	ntra							

S2. Simulation outcomes

Figure S1. Distribution of angles between the normal to the ring in benzene molecular pairs. Blue: liquid nanocluster of 475 molecules. Green: crystalline benzene.

Figure S2. Distribution of angles between molecular C–H vectors in a liquid chloroform cluster consisting of 514 molecules, corresponding to the last frame of the MD simulation.

Figure S3. As Figure 1 in the main text, for bulk liquid benzene.

Figure S4. Comparison of cluster and bulk rotational correlation. (a) Chloroform. (b) Benzene. See also Figure 2 in the main text

Figure S5. Center-of-mass radial distribution curves on the last frame of the MD simulation of liquid clusters. (a) Benzene, after 50 ksteps. (b) Chloroform, after 50 ksteps. Blank dots refer to the g(R) distribution of individual Cl···Cl contacts.

Figure S6. Radial distribution functions for the hydrogen bonding in the final frame of the MD simulation of a methanol cluster.