Negatively charged singly-bonded dimers of substituted C_1 -[$C_{70}(CF_3)_{10}$] and unsubstituted [C_{70}] fullerenes.

Dmitri V. Konarev,*^{*a*} Salavat S. Khasanov,^{*b*} Alexey A. Goryunkov,^{*c*} Sergey I.

Troyanov,^c Victor A. Brotsman,^c Ilya N. Ioffe,^c and Rimma N. Lyubovskaya^a

^aInstitute of Problems of Chemical Physics RAS, Chernogolovka, Moscow region, 142432

Russia;

^bInstitute of Solid State Physics RAS, Chernogolovka, Moscow region, 142432 Russia;

^cLomonosov Moscow State University, Leninskie Gory, Moscow, 119991 Russia.

Supporting information.

Components	C_1 -	C ₇₀	cryptand[2.2.2]	${cryptand[2.2.2](K^{+})}_{2}$	${cryptand[2.2.2](K^+)}_2$
	$C_{70}(CF_3)_{10}$			$\{C_{70}(CF_3)_{10}^{-}\}_2$	$(C_{70})_2$
				$\cdot 0.71C_{6}H_{14}\cdot 0.20C_{6}H_{4}Cl_{2}$ (1)	$\cdot 2.25C_{6}H_{4}Cl_{2}\cdot 0.75C_{6}H_{14}$ (2)
Fullerene	- 601 w 654 w 669 w 708 m 713 w sp 716 w sp 727 m 732 m 737 s 744 m 748 m 754 m 790 w - 816 m 866 w - 902 w 925 w 938 w 945 m 963 m 977 w 988 w 1012 w 1035 w 1048 m 1093 w sp 1100 w sp 1176 vs 1197 s 1239 s 145 w 145 w	457w 534s 564m 576s 642m 673m 794m 1132w 1413w 1429s		510w 524w* 604w 658w 665w 706w 712m 728w 736w* 736w* 748m 800w 813w 847w 879w 900w - 934w 940w - 1008w - 1056w - 1165s sh 1191s 1251vs	451w 471w* 506w 530m* 548w 555w 574w 659w 669w* 695w 711w 720w 789w 800m 842w 888w 1101vs* 1155w 1176w 1209w* 1257w 1278w 1278w 1278w 1392m 1428s 1455s* 1479w* 1550w
Cryptand[K ⁺]			476w 528w 581w 735m 922m 948w 982m 1038w 1071m 1100s 1127s 1213w 1295m 1329m 1360s 1446m 1462m 1462m 1490w 2790w 2877w 2943w	524w 735m* 921w 952m 979w 1044m 1084m 1107vs 1135m 1297w 	471 w* 528m* 574w* 750s* 938s - 983w 1033m* 1056w 1101 vs* 1132m 1209w* 1298w 1323w 1354s 1455s* - 1479w* 2879w 2940w 750s*
					669w 1033m* 1455s*

Table S1. IR spectra of the starting compounds and salts 1 and 2.

w – weak, m – middle, s – strong, vs – very strong intensity; * – the bands are coincided.

IR spectra of pristine compounds and salts 1 and 2.

Fig. S1. IR spectrum of pristine C_1 - $C_{70}(CF_3)_{10}$ on the diamond/ZnSe window .

Fig. S2. IR spectrum of salt {cryptand[2.2.2](K⁺)}₂{C₇₀(CF₃)₁₀⁻}₂·0.71C₆H₁₄·0.20C₆H₄Cl₂ (1) in KBr pellet prepared in an anaerobic conditions.

Fig. S3. IR spectrum of salt {cryptand[2.2.2](K⁺)}₂(C_{70⁻})₂· $2.25C_6H_4Cl_2$ · $0.75C_6H_{14}$ (**2**) in KBr pellet prepared in an anaerobic conditions.