Electronic Supplementary Information (ESI)

Heterobimetallic copper(I) complexes bearing both 1,1'-bis(diphenyl phosphino)ferrocene and functionalized 3-(2'-pyridyl)-1,2,4-triazole

Jing-Lin Chen,^{*,a,d} Xue-Hua Zeng,^a Paramaguru Ganesan,^b Li-Hua He,^a Jin-Sheng Liao,^a Sui-Jun Liu,^a He-Rui Wen,^a Feng Zhao^{*,c} and Yun Chi^{*,b}

^a School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China

^b Department of Chemistry and Low Carbon Energy Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan

^c School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China

^d State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China

Fig. S5 1 H NMR spectrum of 5 in CD₂Cl₂ at room temperature

Fig. S7 1 H NMR spectrum of 7 in CD₂Cl₂ at room temperature

Fig. S13 ³¹P NMR spectrum of 6 in CD₂Cl₂ at room temperature

Fig. S15 19 F NMR spectrum of 1 in CDCl₃ at room temperature

Fig. S19 Variable-temperature 1 H NMR spectra of 7 in CD₂Cl₂ from 298 K to 238 K

Fig. S20 Variable-temperature 31 P NMR spectra of 7 in CD₂Cl₂ from 298 K to 238 K

Fig. S21 Possible structures and dynamic exchange of three different isomers of 7 in CH₂Cl₂

Fig. S22 Cyclic voltammograms of 1–7 in dry CH_2Cl_2 or THF containing 0.1 M (^tBu₄N)PF₆ (Fc^{+/0} = 0.51 V). The scan rate of CV is 50 mV s⁻¹.

Fig. S24 IR spectrum of 1

Fig. S25 IR spectrum of 2

Fig. S26 IR spectrum of 3

Fig. S28 IR spectrum of 5

Fig. S29 IR spectrum of 6

Fig. S30 IR spectrum of 7

Fig. S31 Comparison of the calculated (red line) and experimental (black line) absorption spectra in CH₂Cl₂ media for 1–7. Red vertical lines correspond to oscillator strength of calculated singlet-singlet transitions.

Fig. S32 Assignment of molecular fragments for 1–7

Orbital	Main bond type	Contribution (%)					
	Wall bolld type	Fe	Ср	PPh ₂	Cu	fptzH	
LUMO+10	$\pi^*(\text{PPh}_2)$	6.49	9.04	67.8	4.77	11.9	
LUMO+8	$\pi^*(\text{PPh}_2)$	9.07	11.8	65.8	8.65	4.69	
LUMO	$\pi^*(\text{fptzH})$	0.43	0.0001	2.59	1.70	95.3	
НОМО	$d(Fe)+d(Cu)+\pi(PPh_2)$	33.0	11.6	33.0	20.5	1.91	
HOMO-1	d(Fe)	77.1	19.5	2.37	0.80	0.19	
НОМО-2	d(Fe)+d(Cu)	48.4	12.7	22.5	14.3	1.08	

 $\begin{array}{l} \textbf{Table S1} \ \mbox{Molecular orbital compositions (\%) for 1 in CH_2Cl_2 media at $PBE1PBE/6-31G**/LANL2DZ$ level} \end{array}$

 $\begin{array}{l} \textbf{Table S2} \mbox{ Molecular orbital compositions (\%) for 2 in CH_2Cl_2 media at $PBE1PBE/6-31G**/LANL2DZ$ level} \end{array}$

Orbital	Main bond type		C	ontribution	ribution (%)		
	Wall bold type	Fe	Ср	PPh ₂	Cu	fptz	
LUMO+8	$\pi^*(PPh_2)$	15.0	15.4	61.5	4.00	2.40	
LUMO+7	$\pi^*(\text{PPh}_2)$	22.9	17.2	53.4	3.27	1.89	
LUMO+6	$d(Fe) + \pi^*(PPh_2) + \pi^*(Cp)$	33.9	22.3	38.0	3.02	0.67	
LUMO	$\pi^*(\text{fptz})$	0.46	0.67	5.02	5.29	88.4	
НОМО	$d(Cu)+\pi(PPh_2)$	12.2	6.20	39.8	32.6	8.50	
HOMO-1	d(Fe)	69.8	18.9	4.20	4.96	2.00	
HOMO-2	d(Fe)	65.8	7.30	4.48	4.86	7.38	

Orbital	Main bond type					
	Wall bolld type	Fe	Ср	PPh ₂	Cu	<i>m</i> -fptzH
LUMO+10	$d(Fe)+\pi^*(PPh_2)+\pi^*(Cp)$	32.8	24.3	38.1	3.71	1.08
LUMO+8	$d(Fe)+\pi^*(PPh_2)+\pi^*(Cp)$	35.2	21.3	22.8	4.67	16.1
LUMO	$\pi^*(m ext{-fptzH})$	0.09	0.48	2.68	1.71	95.1
НОМО	$d(Fe)+d(Cu)+\pi(PPh_2)$	32.3	11.5	33.0	21.0	2.13
HOMO-1	$d(Fe)+\pi(Cp)$	77.1	25.5	2.38	0.83	0.20
HOMO-2	$d(Fe)+\pi(PPh_2)$	49.0	13.8	21.8	14.2	1.19

 $\label{eq:solution} \begin{array}{l} \textbf{Table S3} \mbox{ Molecular orbital compositions (\%) for 3 in CH_2Cl_2 media at $PBE1PBE/6-31G**/LANL2DZ$ level } \end{array}$

Table S4 Molecular orbital compositions (%) for **4** in CH2Cl2 media atPBE1PBE/6-31G**/LANL2DZ level

Orbital	Main bond type	Contribution (%)					
		Fe	Ср	PPh ₂	Cu	<i>m</i> -fptz	
LUMO+8	$\pi^*(PPh_2)$	13.6	14.5	64.9	4.18	2.83	
LUMO+7	$\pi^*(PPh_2)$	24.8	17.7	51.3	3.45	2.76	
LUMO+6	$d(Fe)+\pi^*(PPh_2)$	33.0	21.8	41.5	3.03	0.62	
LUMO	$\pi^*(m ext{-fptz})$	0.53	0.70	5.19	5.11	88.5	
HOMO	$d(Cu)+\pi(PPh_2)$	11.6	10.7	40.1	32.7	21.1	
HOMO-1	d(Fe)	68.7	18.8	4.56	5.65	2.31	
HOMO-2	d(Fe)	57.7	15.1	2.40	3.23	21.6	

Orbital	Main bond type		Co	ontributio	ution (%) ² Cu <i>p</i> -fptzH 7 4.29 1.11			
		Fe	Ср	PPh ₂	Cu	<i>p</i> -fptzH		
LUMO+10	$\pi^*(PPh_2)$	30.2	22.7	41.7	4.29	1.11		
LUMO+8	$d(Fe)+\pi^*(PPh_2)+\pi^*(Cp)$	35.5	21.9	25.9	5.36	11.4		
LUMO	$\pi^*(p-\text{fptzH})$	0.07	0.37	2.50	1.54	95.5		
НОМО	$d(Fe)+d(Cu)+\pi(PPh_2)$	32.0	11.5	32.9	21.4	2.21		
HOMO-1	d(Fe)	77.2	19.6	2.27	0.78	0.18		
HOMO-2	d(Fe)	49.1	13.9	21.3	14.5	1.25		

 $\label{eq:tables} \begin{array}{l} \textbf{Table S5} \mbox{ Molecular orbital compositions (\%) for 5 in CH_2Cl_2 media at $PBE1PBE/6-31G**/LANL2DZ$ level} \end{array}$

Table S6 Molecular orbital compositions (%) for **6** in CH2Cl2 media atPBE1PBE/6-31G**/LANL2DZ level

Orbital	Main bond type		Contribution (%)	n (%)		
	Main oond type	Fe	Ср	PPh ₂	Cu	<i>p</i> -fptz
LUMO+8	$\pi^*(\text{PPh}_2)$	22.1	18.0	53.6	4.14	2.08
LUMO+7	$\pi^*(PPh_2)$	23.4	15.8	53.2	4.50	3.04
LUMO+6	$\pi^*(PPh_2)$	21.1	17.6	57.6	2.77	0.89
LUMO	$\pi^*(p-\text{fptz})$	0.52	0.68	25.9	4.92	67.9
НОМО	$d(Cu)+\pi(PPh_2)$	12.0	6.20	41.1	32.9	7.83
HOMO-1	d(Fe)	68.8	18.7	4.71	5.58	2.21
HOMO-2	d(Fe)	65.8	17.3	4.77	4.95	7.19

Orbital	Main bond type	Contribution (%)				
	Wall bold type	Fe	Ср	PPh ₂	Cu	<i>p</i> -fptz
LUMO+9	$d(Fe)+\pi^*(PPh_2)+\pi^*(Cp)$	29.9	22.7	43.7	2.93	0.73
LUMO+7	$d(Fe) + \pi^*(PPh_2) + \pi^*(Cp)$	44.4	26.4	23.4	4.51	1.27
LUMO	$\pi^*(p-\text{fptz})$	0.25	0.47	4.13	4.25	90.9
НОМО	$d(Fe)+d(Cu)+\pi(PPh_2)$	24.3	9.60	37.6	24.9	3.65
HOMO-1	d(Fe)	77.3	19.5	2.26	0.78	0.21
HOMO-2	d(Fe)	56.5	15.5	15.6	10.9	1.55

Table S7 Molecular orbital compositions (%) for 7 in CH2Cl2 media atPBE1PBE/6-31G**/LANL2DZ level