Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information

Mitochondrial Directed Ratiometric Fluorescent Probe for Quantitively Detection of Sulfur Dioxide Derivatives

Congcong Gao, Yong Tian, Rubo Zhang*, Jing Jing*, Xiaoling Zhang*

Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, PR China. Corresponding author. Tel/fax: +86 010 88875298. E-mail addresses: zhangxl@bit.edu.cn, hellojane@bit.edu.cn, zhangrubo@bit.edu.cn.

Contents:

1. Cytotoxicity assay	
2. Supplement Date	S2

Cytotoxicity assay

HeLa cells were cultured in culture media (DMEM) in an atmosphere of 5% CO₂ and 95% air at 37 °C. The cells were seeded into 96-well plates at a density of 5×10^3 cells per well in culture media, then 0, 5, 10, 15, 20, and 25 μ M MN (final concentration) were added, respectively. Next, the cells were incubated at 37 °C in an atmosphere of 5% CO₂ and 95% air for 24 h. Finally, 10 μ L 3-(4,

5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT, 5 mg/mL) was added and the cells were cultured for another 4 h, respectively. When the purple precipitate is clearly visible under the microscope, add 100 μ L DMSO to all wells, and swirl gently. Then measure the absorbance in each well, including the blanks, at 570 nm in a microtiter plate reader (Bio-Rad 680).

Supplement Date

Scheme. S1 The synthesis route of the probe MN

Fig. S1 Proposed reaction mechanism of MN with SO₃²⁻/HSO₃⁻

Fig. S2 The linear relationship between the fluorescence intensity ratio of the probe (10 μ M) and the SO₃^{2–}/HSO₃⁻ concentration(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 μ M). Excitation at 405 nm.

Fig. S3 The fluorescence intensity of probe **MN** (10 μ M) in the absence and presence of SO₃²⁻/HSO₃⁻ (10 μ M) changes with the pH of PBS buffer solution (pH 7.4, PO₄³⁻ = 20 mM).

Fig. S4 Fluorescence responses of the probe (10 μM) toward various analytes: (100 μM): (1) Br⁻;
(2) Cl⁻; (3) ClO⁻; (4) Hcy; (5) Cys; (6) GSH; (7) HPO4²⁻; (8)SO4²⁻; (9) NO2⁻; (10) NO3⁻; (11)
ACO⁻; (12) HS⁻; (13) S²⁻; (14) S₂O₃²⁻; (15) probe **MN**; (16) SO3²⁻/HSO3⁻ (20 μM) (except : GSH 1 mM, Hcy 1 mM, Cys 1 mM) in PBS buffer solution (pH 7.4, PO4³⁻ = 20 mM).

Fig. S5 The photostability of the probe (10 μ M) detected in PBS buffer, pH = 7.4, 20 mM at room temperature. Slit width: 5 nm/5 nm.

Fig.S6 (A) Absorption spectra and (B) fluorescence spectra of MN (10 μ M) in the absence of SO₃²⁻/HSO₃⁻ (10 μ M) at room temperature and 37°C, respectively. The measurements were performed in PBS (20 mM, pH = 7.4). Excitation wavelength = 405 nm. Slit width: 5 nm/5 nm.

Fig. S7 Cytotoxicity assays of **MN** in HeLa cells. Cells were treated with different concentrations of probe MN for 24 h. Data are expressed as the mean ± SD

Fig. S8 ¹H NMR spectrum of probe MN

Fig. S9 High resolution HRMS chart of probe MN treated without and with SO_3^{2-}/HSO_3^{-}