Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Nickel-Catalyzed Regioselective C–H Halogenation of Electron-Deficient Arenes

Ze-lin Li^a, Peng-yu Wu^a, and Chun Cai*a

^a Chemical Engineering College, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China

Fax: (+86)-25-8431-5030; phone: (+86)-25-8431-5514; e-mail: c.cai@njust.edu.cn

1. General information	2
2. General procedure	2
3. Characterization data	3
4. NMR spectra	9

1.General information

All compounds are characterized by 1H NMR, ^{13}C NMR and MS. Analytical thin-layer chromatography is performed on glass plates precoated with silica gel impregnated with a fluorescent indicator (254 nm), and the plates are visualized by exposure to ultraviolet light. 1H NMR and ^{13}C NMR spectra are recorded on an AVANCE 500 Bruker spectrometer operating at 500 MHz and 125 MHz in CDCl₃, respectively, and chemical shifts are reported in ppm.GC analyses are performed on an Agilent 7890A instrument (Column: Agilent 19091J-413:30 m \times 320 μ m \times 0.25 μ m, H, FID detection). GC-MS data was recorded on a 5975C Mass Selective Detector, coupled with a 7890A Gas Chromatograph (Agilent Technologies).

2.General procedure

General procedure for the synthesis of mono-bromination product: To a mixture of benzamide (0.5 mmol) 1a, Ni(OAc)₂ (15%mmol), AgSbF₆ (0.2 equiv), TfOH (0.5 equiv), and DCE (1.5ml) in a reaction tube was added N-bromosuccinimide (NBS) (1.5 equiv.). The reaction mixture was stirred at 80°C for 12h. The reaction mixture was extracted with ethyl acetate (15 mL \times 3). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to afford the desired products 3a.

General procedure for the synthesis of di-bromination product: To a mixture of benzamide (0.5 mmol) 1a, Ni(OAc)₂ (15%mmol), AgSbF₆ (0.2 equiv), TfOH (0.5 equiv), and DCE (1.5ml) in a reaction tube was added N-bromosuccinimide (NBS) (2.5 equiv.). The reaction mixture was stirred at 80°C for 36h. The reaction mixture was extracted with ethyl acetate (15 mL \times 3). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to afford the desired products 5a.

3. Characterization data

2-bromobenzamide (3a): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **3a** as white solid (81.59mg, 82%). 1 H NMR (500 MHz, Chloroform-*d*) δ 7.73 – 7.63 (m, 2H), 7.46 – 7.41 (m, 1H), 7.38 – 7.33 (m, 1H), 6.16 (s, 1H), 6.02 (s, 1H). 13 C NMR (126 MHz, Chloroform-*d*) δ 168.1, 135.6, 132.6, 130.7, 129.0, 126.6, 118.2. GC-MS (EI) m/z: 199.

2-bromo-4-fluorobenzamide (**3b**): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **3b** as white solid (85.72mg, 79%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.71 (dd, J = 8.7, 6.0 Hz, 1H), 7.37 (dd, J = 8.2, 2.5 Hz, 1H), 7.14 – 7.08 (m, 1H), 6.16 (s, 1H), 6.03 (s, 1H). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.71 (dd, J = 8.7, 6.0 Hz, 1H), 7.37 (dd, J = 8.2, 2.5 Hz, 1H), 7.14 – 7.08 (m, 1H), 6.14 (s, 1H), 6.04 (s, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 167.1, 163.2, 131.7, 130.9, 120.1, 119.9, 114.1, 114.0. GC-MS (EI) m/z: 217.

2-bromo-4-chlorobenzamide (3c): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give 3c as white solid (89.71mg, 77%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.68 – 7.58 (m, 2H), 7.38 (dd, J = 8.3, 2.0 Hz, 1H), 6.15 (s, 1H), 6.00 (s, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 167.2, 136.2, 133.9, 132.3, 130.1, 127.0, 118.8. GC-MS (EI) m/z: 233.

2-bromo-4-methylbenzamide (3d): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **3d** as white solid (72.42mg, 68%). ¹H NMR (500 MHz, DMSO- d_6) δ 7.72 (s, 1H), 7.43 (s, 2H), 7.25 (d, J = 7.7 Hz, 1H), 7.19 – 7.14 (m, 1H), 2.27 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 168.5, 140.2, 135.8, 132.4, 127.9, 127.5, 118.0, 19.8. GC-MS (EI) m/z: 213.

2-bromo-N-methylbenzamide (3e): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give 3e as white solid (77.75mg, 73%). ¹H NMR (500 MHz, Chloroform-d) δ 7.63 (dd, J = 8.0, 1.2 Hz, 1H), 7.57 (dd, J = 7.6, 1.8 Hz, 1H), 7.42 – 7.37 (m, 1H), 7.33 – 7.29 (m, 1H), 6.07 (s,

1H), 3.07 (d, J = 4.9 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 167.3, 136.9, 132.4, 130.2, 128.6, 126.6, 118.3, 25.8. GC-MS (EI) m/z: 213.

2-bromo-N-(tert-butyl)benzamide (3f): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **3f** as white solid (89.25mg, 70%). 1 H NMR (500 MHz, Chloroform-d) δ 7.56 (dd, J = 8.0, 1.2 Hz, 1H), 7.50 – 7.48 (m, 1H), 7.35 – 7.31 (m, 1H), 7.26 – 7.21 (m, 1H), 5.73 (s, 1H), 1.48 (s, 9H). 13 C NMR (126 MHz, Chloroform-d) δ 166.0, 138.1, 132.2, 130.8, 129.9, 128.3, 126.5, 51.3, 27.8. GC-MS (EI) m/z: 255.

2,4-dibromo-N-methylbenzamide (**3g**): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **3g** as white solid (92.30mg, 63%). 1 H NMR (500 MHz, Chloroform-d) δ 7.80 (d, J = 1.8 Hz, 1H), 7.53 (dd, J = 8.2, 1.8 Hz, 1H), 7.44 (d, J = 8.2 Hz, 1H), 6.13 (s, 1H), 3.05 (d, J = 4.9 Hz, 3H). 13 C NMR (126 MHz, Chloroform-d) δ 166.3, 135.7, 134.8, 133.0, 129.8, 123.5, 119.0, 25.8. GC-MS (EI) m/z: 293.

2-bromo-4-methoxybenzenesulfonamide (3h): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **3h** as white solid (91.43mg, 69%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.11 (d, J = 2.3 Hz, 1H), 7.87 (dd, J = 8.6, 2.3 Hz, 1H), 6.97 (d, J = 8.7 Hz, 1H), 3.98 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 158.8, 133.8, 130.9, 126.6, 111.4, 110.4, 55.7. GC-MS (EI) m/z: 265.

2-bromo-N-methylbenzenesulfonamide (3i): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **3i** as white solid (93.34mg, 75%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.20 (dd, J = 7.8, 1.8 Hz, 1H), 7.79 (dd, J = 7.9, 1.3 Hz, 1H), 7.60 – 7.29 (m, 3H), 2.66 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 136.6, 134.1, 132.8, 131.1, 126.9, 118.6, 28.3. GC-MS (EI) m/z: 249.

2-bromo-N,4-dimethylbenzenesulfonamide (3j): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **3j** as white solid (93.37mg, 71%). ¹H NMR (500 MHz, Chloroform-d) δ 8.01 (d, J = 8.1 Hz,

1H), 7.56 (dd, J = 1.7, 0.8 Hz, 1H), 7.28 – 7.26 (m, 1H), 2.60 (d, J = 5.4 Hz, 3H), 2.41 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 144.1, 134.5, 133.6, 131.1, 127.5, 118.4, 28.3, 20.1. GC-MS (EI) m/z: 263.

methyl 2-bromobenzoate (3k): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give 3k as white solid (81.32mg, 76%). ¹H NMR (500 MHz, Chloroform-d) δ 7.77 (dd, J = 7.5, 2.0 Hz, 1H), 7.64 (dd, J = 7.8, 1.5 Hz, 1H), 7.38 – 7.27 (m, 2H), 3.92 (s, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 165.6, 133.3, 131.6, 131.2, 130.3, 126.2, 120.6, 51.5. GC-MS (EI) m/z: 214.

ethyl 2-bromobenzoate (3l): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **3l** as white solid (74.90mg, 70%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.78 (dd, J = 7.6, 1.9 Hz, 1H), 7.65 (dd, J = 7.8, 1.4 Hz, 1H), 7.40 – 7.28 (m, 2H), 4.41 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.3, 133.3, 131.6, 131.4, 130.2, 126.2, 120.5, 60.6, 13.2. GC-MS (EI) m/z: 228.

$$\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\$$

2-iodobenzamide (4a): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **4a** as white solid (100.04mg, 81%). 1 H NMR (500 MHz, DMSO- d_6) δ 7.85 (d, J = 7.9 Hz, 1H), 7.80 (s, 1H), 7.49 (s, 1H), 7.41 (t, J = 7.4 Hz, 1H), 7.33 (dd, J = 7.5, 1.7 Hz, 1H), 7.13 (td, J = 7.6, 1.8 Hz, 1H). 13 C NMR (126 MHz, DMSO- d_6) δ 170.1, 142.6, 138.6, 130.0, 127.4, 127.2, 92.6. GC-MS (EI) m/z: 247.

2-iodo-N-methylbenzamide (4b): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **4b** as white solid (99.18mg, 76%). 1 H NMR (500 MHz, Chloroform-d) δ 7.92 – 7.77 (m, 1H), 7.48 – 7.32 (m, 2H), 7.10 (m, 1H), 5.77 (s, 1H), 3.03 (d, J = 4.9 Hz, 3H). 13 C NMR (126 MHz, Chloroform-d) δ 169.1, 141.4, 138.9, 130.1, 127.2, 126.8, 91.5, 25.8. GC-MS (EI) m/z: 261.

methyl 2-iodobenzoate (4c): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give 4c as white

solid (100.87mg, 77%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.97 (dd, J = 8.0, 1.1 Hz, 1H), 7.78 (dd, J = 7.8, 1.7 Hz, 1H), 7.38 (td, J = 7.6, 1.1 Hz, 1H), 7.13 (td, J = 7.6, 1.8 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.9, 140.3, 134.1, 131.7, 130.0, 126.9, 93.1, 51.5. GC-MS (EI) m/z: 262.

2-chlorobenzamide (4d): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **4d** as white solid (54.25mg, 70%). 1 H NMR (500 MHz, Chloroform-*d*) δ 7.85 – 7.74 (m, 1H), 7.57 – 7.32 (m, 3H), 6.69 (s, 1H), 6.46 (s, 1H). 13 C NMR (126 MHz, Chloroform-*d*) δ 167.5, 132.9, 130.8, 129.9, 129.6, 129.4, 126.2. GC-MS (EI) *m/z*: 155.

2-chloro-N-methylbenzamide (4e): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **4e** as white solid (55.77mg, 66%). 1 H NMR (500 MHz, Chloroform-d) δ 7.67 (dd, J = 7.3, 1.9 Hz, 1H), 7.41 – 7.32 (m, 3H), 6.24 (s, 1H), 3.03 (d, J = 4.9 Hz, 3H). 13 C NMR (126 MHz, Chloroform-d) δ 166.2, 134.1, 130.3, 129.6, 129.2, 128.9, 126.1, 25.8. GC-MS (EI) m/z: 169.

methyl 2-chlorobenzoate (4f): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give 4f as white solid (58.65mg, 69%). 1 H NMR (500 MHz, Chloroform-d) δ 7.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.42 (m, 2H), 7.30 (td, J = 7.5, 1.4 Hz, 1H), 3.93 (s, 3H). 13 C NMR (126 MHz, Chloroform-d) δ 165.1, 132.7, 131.5, 130.4, 130.0, 129.1, 125.6, 51.4. GC-MS (EI) m/z: 170.

2-chlorobenzenesulfonamide (**4g**): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **4g** as white solid (67.81mg, 71%). ¹H NMR (500 MHz, DMSO- d_6) δ 7.97 (dd, J = 7.8, 1.7 Hz, 1H), 7.65 – 7.56 (m, 4H), 7.51 (td, J = 7.6, 1.5 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 140.5, 132.9, 131.0, 129.8, 128.4, 126.9. GC-MS (EI) m/z: 191.

2,6-dibromobenzamide (5a): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **5a** as white solid (104.63mg, 75%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.56 (d, J = 8.1 Hz, 2H),

7.13 (t, J = 8.0 Hz, 1H), 5.94 (s, 1H), 5.73 (s, 1H).¹³C NMR (126 MHz, DMSO-d6) δ 166.3, 135.5, 132.5, 128.9, 127.8. GC-MS (EI) m/z: 279.

2,6-dibromo-4-chlorobenzamide (5b): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **5b** as white solid (112.32mg,72%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.58 (s, 2H), 6.02 (s, 1H), 5.77 (s, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 166.2, 136.8, 135.3, 130.7, 119.3. GC-MS (EI) m/z: 312.

2,6-dibromo-N-methylbenzamide (**5c**): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **5c** as white solid (108.41mg, 74%). H NMR (500 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 8.1 Hz, 2H), 7.14 (t, *J* = 8.1 Hz, 1H), 5.79 (s, 1H), 3.09 (d, *J* = 4.9 Hz, 3H). Chloroform-*d*) δ 166.1, 139.0, 130.8, 130.1, 119.5, 25.7. GC-MS (EI) *m/z*: 293.

2,6-dibromo-N-(tert-butyl)benzamide (5d): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **5d** as white solid (115. 23mg, 69%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 (d, J = 8.1 Hz, 2H), 7.08 (d, J = 8.1 Hz, 1H), 5.48 (s, 1H), 1.49 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 164.2, 139.4, 130.8, 130.0, 119.5, 51.6, 27.7. GC-MS (EI) m/z: 344.

$$\begin{array}{cccc} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ N-Me & & & & \\ H & & & & & \\ Rr & & & & \\ Rr & & & & \\ \end{array}$$

2,4,6-tribromo-N-methylbenzamide (5e): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **5e** as white solid (105.74mg, 57%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.74 (s, 2H), 5.83 (s, 1H), 3.08 (d, J = 5.0 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.4, 137.9, 133.3, 122.8, 120.0, 25.7. GC-MS (EI) m/z: 371.

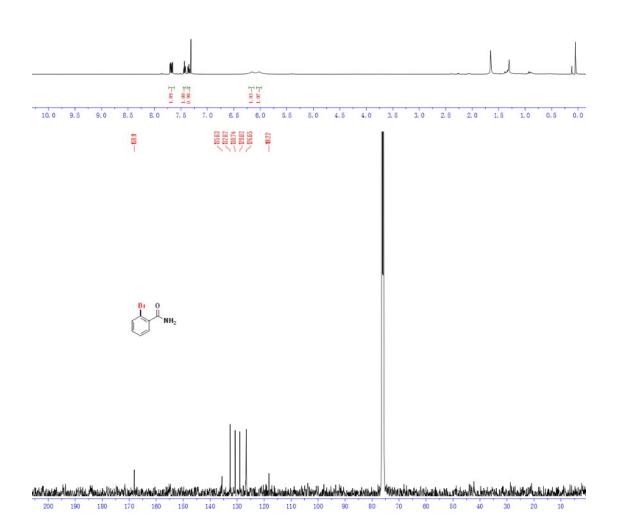
$$\operatorname{\mathsf{Br}}$$
 O O Formula: $\operatorname{\mathsf{C}}_7\operatorname{\mathsf{H}}_7\operatorname{\mathsf{Br}}_2\operatorname{\mathsf{NO}}_2\operatorname{\mathsf{S}}$
 $\operatorname{\mathsf{Me}}$ Mass: 329

2,6-dibromo-4-methylbenzenesulfonamide (5f): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **5f** as white solid (100.35mg, 61%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.28 (s, 1H), 7.61 (s, 1H), 5.18 (s, 2H), 2.45 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 143.8, 137.9, 135.5, 132.3, 21.8. GC-MS (EI) m/z: 329.

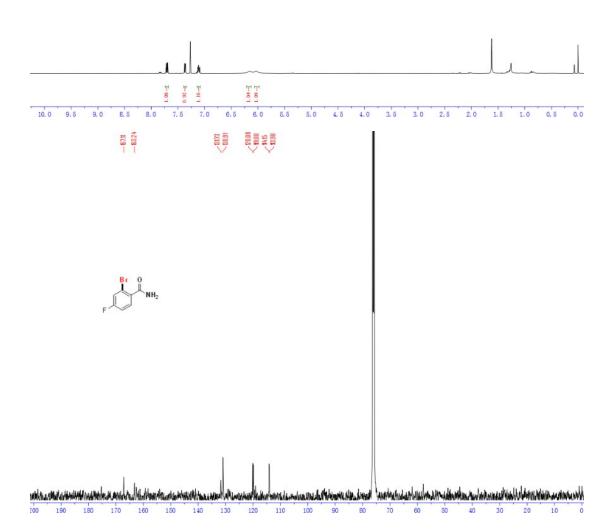
2,6-dibromo-N,4-dimethylbenzenesulfonamide (5g): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **5g** as white solid (94.33mg, 55%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.27 (s, 1H), 7.60 (s, 1H), 5.03 (s, 1H), 2.64 (d, J = 5.4 Hz, 3H), 2.45 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 143.9, 135.6, 134.3, 123.2, 28.3, 21.8. GC-MS (EI) m/z: 343.

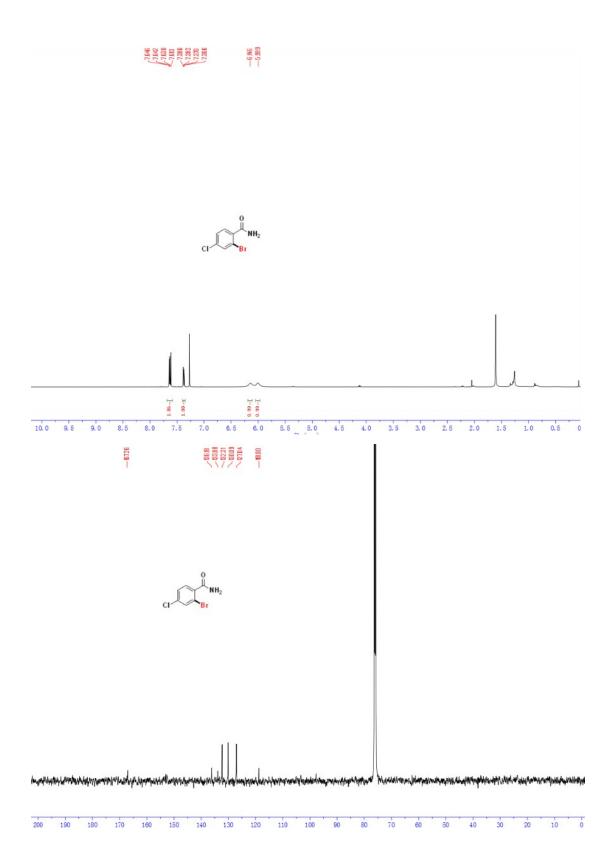
2,6-dichlorobenzamide (5h): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **5h** as white solid (66.15mg, 70%). ¹H NMR (500 MHz, DMSO- d_6) δ 8.04 (s, 1H), 7.77 (s, 1H), 7.46 – 7.43 (m, 2H), 7.36 (dd, J = 8.9, 7.3 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 164.8, 136.5, 130.2, 130.1, 127.5. GC-MS (EI) m/z: 189.

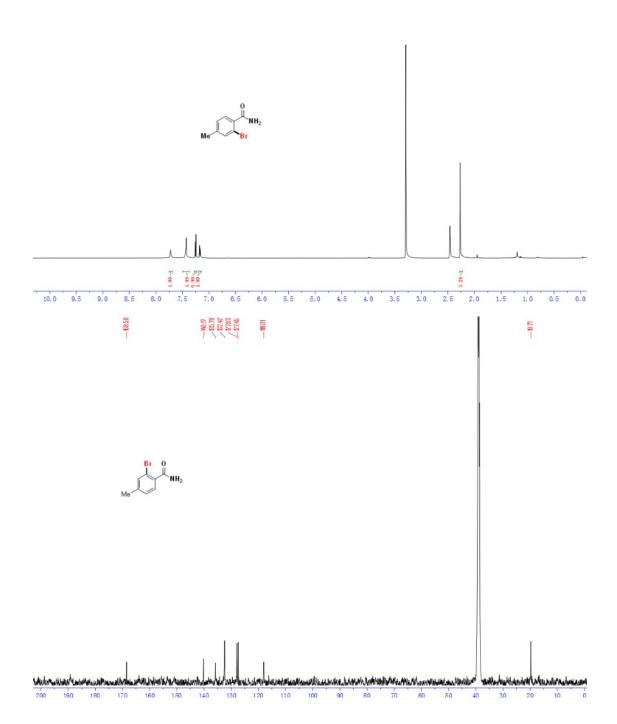
3-bromobenzamide (3a₀): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give 3a₀ as white solid (82.59mg, 83%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.97 (d, J = 2.0 Hz, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.67 (dd, J = 7.9, 1.9 Hz, 1H), 7.34 (t, J = 7.9 Hz, 1H), 6.10 (s, 1H), 5.92 (s, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 165.8, 135.9, 133.4, 130.0, 129.7, 126.0, 121.1. GC-MS (EI) m/z: 199.

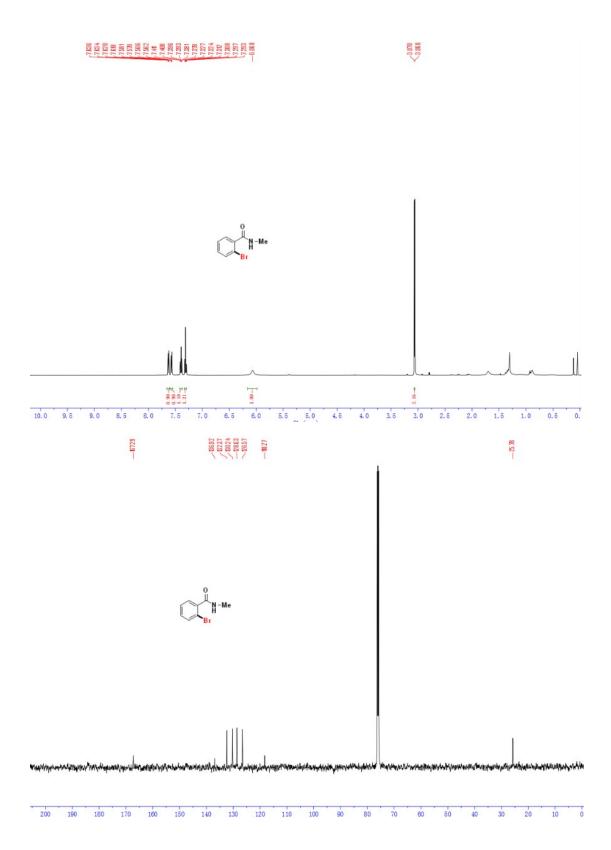

2-bromo-N,N-dimethylbenzamide (3a'): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give **3a'** as white solid (87.39mg, 77%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.57 (dd, J = 8.0, 1.1 Hz, 1H), 7.36 (m, 1H), 7.27 – 7.22 (m, 2H), 3.14 (s, 3H), 2.86 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 168.3, 137.9, 133.0, 131.7, 129.2, 126.7, 118.2, 37.2, 33.7. GC-MS (EI) m/z: 227.

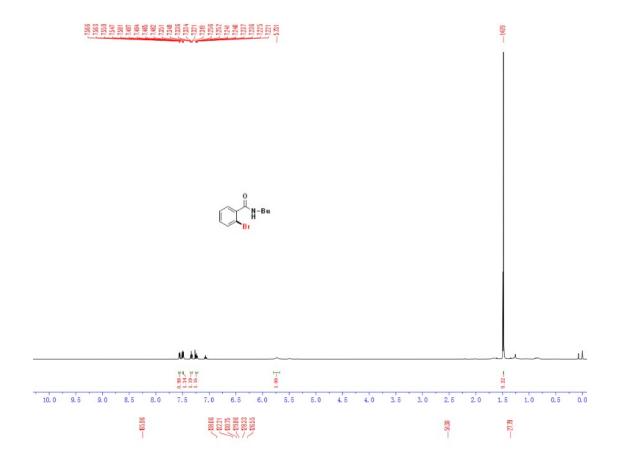
2,5-dibromobenzamide ($3a_0$ '): The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give $3a_0$ ' as white solid (99.05mg, 71%). H NMR (500 MHz, DMSO- d_6) δ 7.99 (s, 1H), 7.72 (s, 1H), 7.54 – 7.52 (m, 2H), 7.51 (s, 1H). 13 C NMR (126 MHz, Chloroform-d) δ 171.9, 143.9, 136.8, 136.6, 135.6, 133.7, 133.5. GC-MS (EI) m/z: 279.

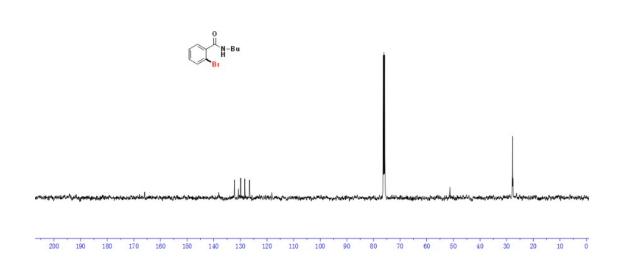

4. NMR spectra

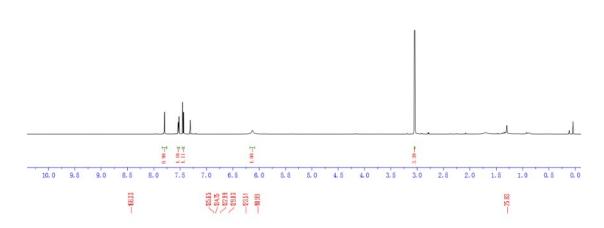

7.70 7.706 7.708 7.7

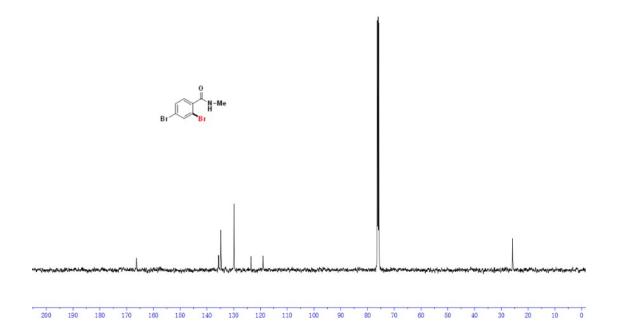


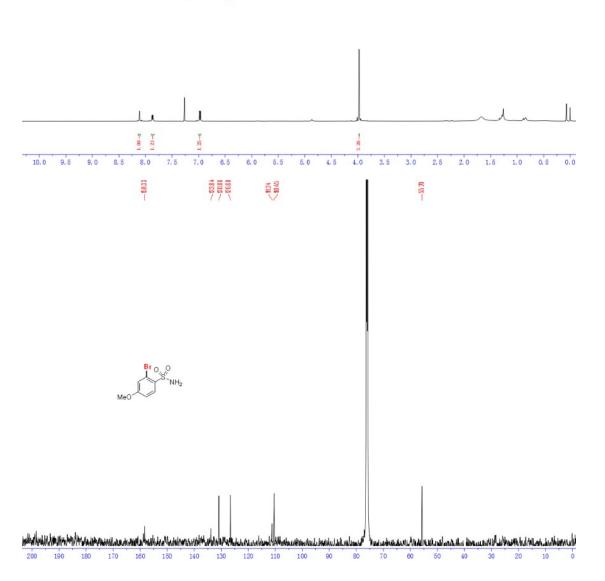


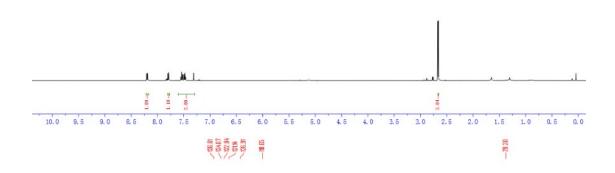


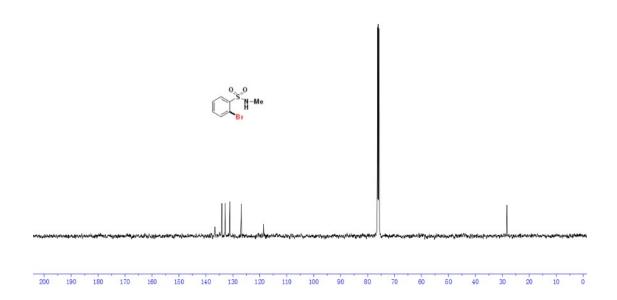


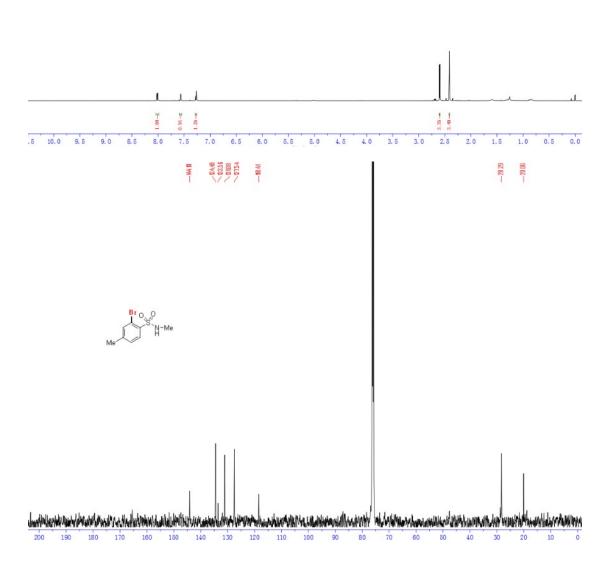


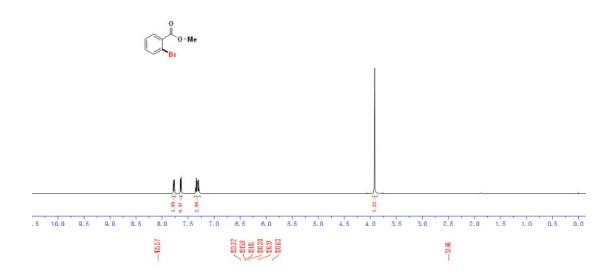


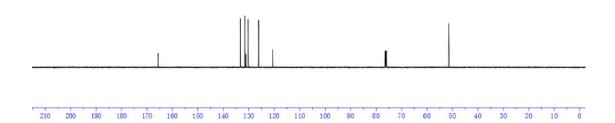


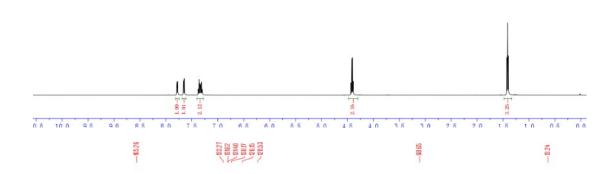


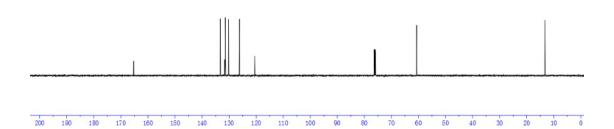


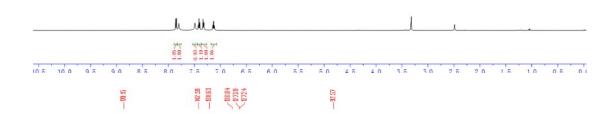


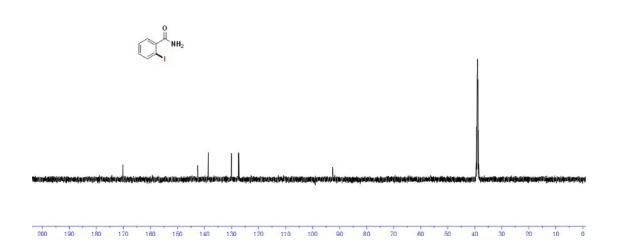


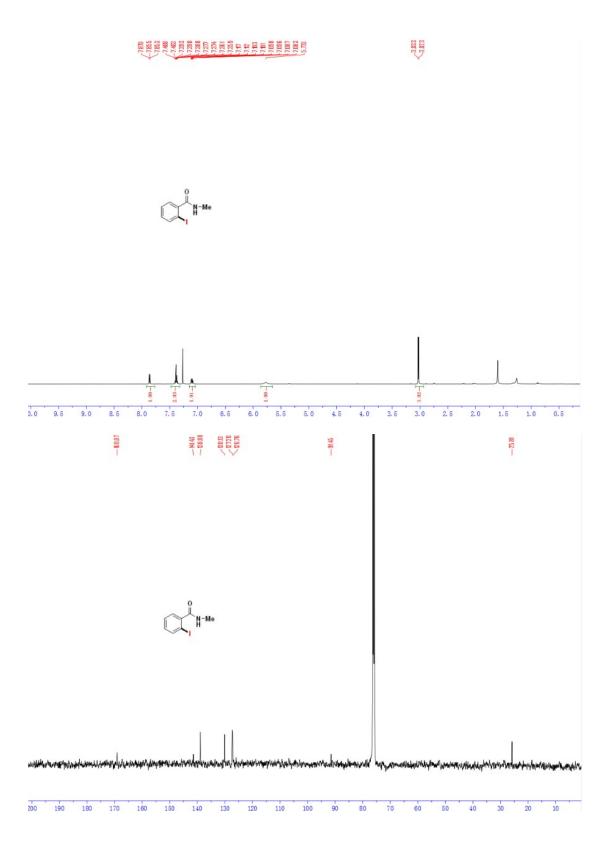


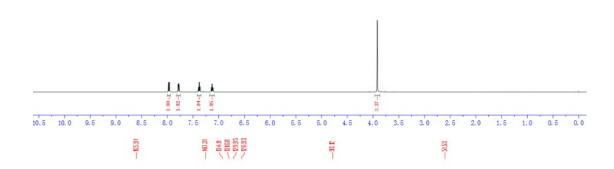


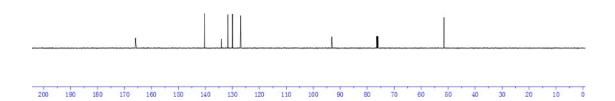


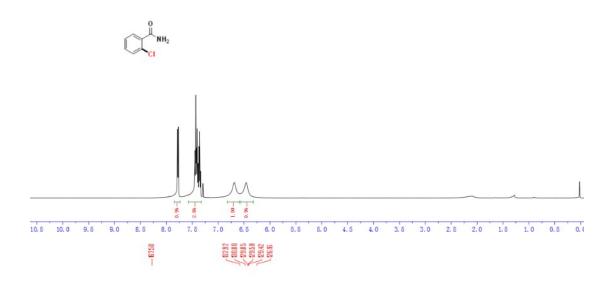


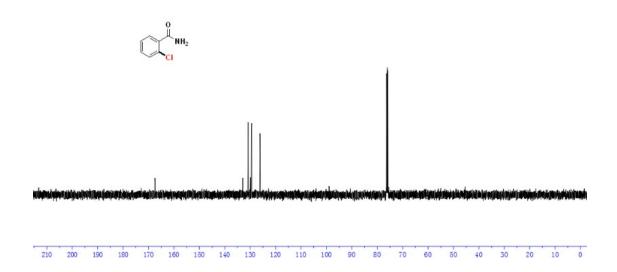


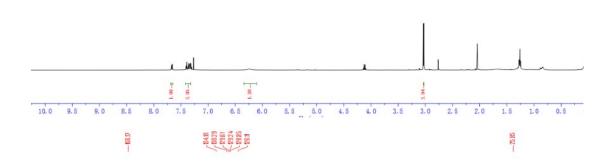


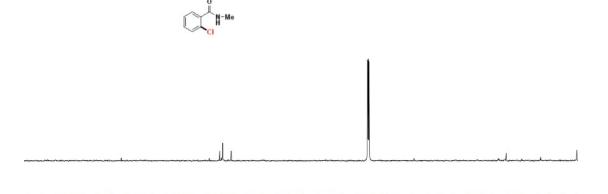


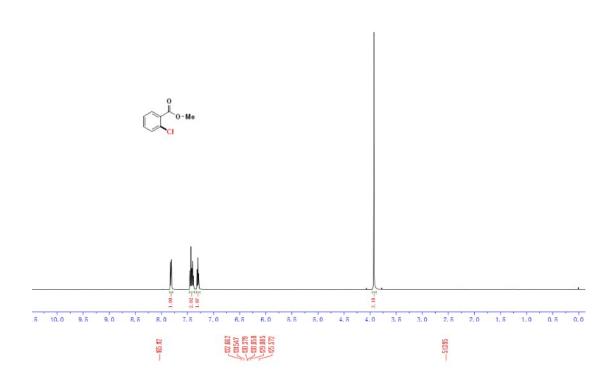


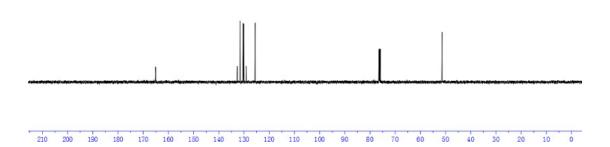












200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

