Supporting Information

Hydrogenation of hydrophobic substrates catalyzed by gold nanoparticles embedded in Tetronics/cyclodextrins-based hydrogels

Mélanie Chevry ^a, Stéphane Menuel^a, Bastien Léger^{a,*}, Sébastien Noël^a, Eric Monflier^a, Frédéric Hapiot^{a,*}

^a Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens, France. E-mail: bastien.leger@univ-artois.fr; frederic.hapiot@univ-artois.fr

	Page
Figure S1. Photographs of reaction medium for each step of the synthesis of	2
AunP@α-CD/Tetronics®90R4 hydrogel	
Figure S2. TEM image of Au NPs embedded in Tetronics®90R4 after a) 30 min, b)	3
60 min, and c) 90 min	
Figure S3. Viscosity curves as a function of temperature of α -CD/Tetronics [®] 90R4	_
hydrogel without AuNP and $lpha$ -CD/Tetronics®90R4 hydrogel with AuNP	4
Figure S4. TEM image of Au NPs embedded in α -CD/Tetronics [®] 90R4 hydrogel	5
after ten consecutive heat and cool cycles (from room temperature to 50 °C)	
Figure S5. a) TEM image of Au NPs embedded in α -CD/Tetronics®90R4 hydrogel	
at a magnification of 490K ; b) Reduced FFT-derived diffraction pattern in a typical	5
crystalline region	
Characterization of the organic phase	6

Fig. S1 Photographs of reaction medium for each step of the synthesis of AuNP@ α -CD/Tetronics[®]90R4 hydrogel.

<u>אד</u>

AuNP@Tetronics[®]90R4_40 °C

AuNP@aCD/Tetronics*90R4_40 °C

AuNP@αCD/Tetronics®90R4_ 20 °C

Fig. S2 TEM image of Au NPs embedded in Tetronics[®]90R4 after a) 30 min, b) 60 min, and c) 90 min.

Fig. S3 Viscosity curves as a function of temperature of α -CD/Tetronics®90R4 hydrogel without AuNP (\blacklozenge) and α -CD/Tetronics®90R4 hydrogel with AuNP (\blacklozenge).

While a small drop of viscosity could be observed below the sol/gel transition temperature upon addition of AuNPs, no variation was noticed above. Accordingly, the viscosity did not influence the catalytic performance.

Fig. S4 TEM image of Au NPs embedded in α -CD/Tetronics®90R4 hydrogel after ten consecutive heat and cool cycles (from room temperature to 50 °C).

Fig. S5 a) TEM image of Au NPs embedded in α -CD/Tetronics[®]90R4 hydrogel at a magnification of 490K. b) Reduced FFT-derived diffraction pattern in a typical crystalline region.

Characterization of the organic phase

The characterization of the organic phase during a catalytic run and for the recyclability study was done by gas chromatography. The reaction composition was determined after taking 0.25 mL of the reaction mixture which was diluted in 1 mL of water. The organic products were extracted with 0.5 mL of chloroform and analyzed by gas chromatography using a Varian 3900 gas chromatograph, equipped with a CP-SiI-5B (30 m × 0.25 mm x 0.25 μ m) and a flame ionization detector, using decane or dodecane as external standard.