Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

ELECTRONIC SUPPLEMENTARY INFORMATION

Comparing Conventional and Microwave-Assisted Heating in PET Degradation Mediated by Imidazolium-Based Halometallate Complexes[†]

Fabio Scé,^a Israel Cano,^{*b} Carmen Martin,^b Garikoitz Beobide,^c Óscar Castillo^c and Imanol de Pedro^{*a}

^aUniversidad de Cantabria, CITIMAC, Facultad de Ciencias, Avda. de los Castros s/n, 39005 Santander, Spain.

^bGSK Carbon Neutral Laboratory for Sustainable Chemistry, University of Nottingham, NG7 2GA, Nottingham, UK

^cUniversidad del País Vasco, Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Apartado 644, E-48080, Bilbao, Spain.

Contents

1.	X-ray crystal structure of (dimim) ₂ [Fe ₂ Cl ₆ (µ-O)]	S2
2.	Recycling experiments	S 3
3.	Characterization of BHET product	S4
4.	X-ray crystal structure of BHET product	S 5

1. X-ray crystal structure of (dimim)₂[Fe₂Cl₆(µ-O)]

	(dimim) ₂ [Fe ₂ Cl ₆ (μ-Ο)]	
Empirical formula	$C_{10}H_{18}Cl_6Fe_2N_4O$	
Formula weight	550.47	
Crystal system	triclinic	
Space group	$P^{\overline{1}}$	
<i>a</i> (Å)	7.322(1)	
b (Å)	7.5071(8)	
<i>c</i> (Å)	10.492(1)	
α (°)	103.00(1)	
β (°)	100.47(1)	
γ (°)	92.43(1)	
V (Å ³)	550.5(1)	
Ζ	1	
$\rho \left(g \cdot cm^{-3} \right)$	1.613	
$\mu (mm^{-1})$	17.321	
Reflections collected	3365	
Unique data/parameters	2130/109	
R	0.0430	
Goodness of fit (S) ^a	1.088	
$R_1^{b/w}R^{2c}$ [I>2 σ (I)]	0.0865/0.2671	
R_1^b/wR^2^c [all data]	0.0970/0.2806	

Table S1 Crystallographic data and structure refinement details of (dimim)₂[Fe₂Cl₆(µ-O)].

^a S = $[\Sigma w(F_0^2 - F_c^2)^2 / (N_{obs} - N_{param})]^{1/2}$. ^b R₁ = $\Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; ^c wR2 = $[\Sigma w(F_0^2)^2 - F_c^2)^2 / \Sigma w(F_0^2)^2]^{1/2}$; w = $1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ where P = $(max(F_0^2, 0) + 2Fc^2)/3$, being a = 0.1687, b = 0.3119.

	Bond lengths (Å)
Fe1–O1	1.848(2)
Fe1–Cl1	2.217(2)
Fe1–Cl2	2.211(2)
Fe1–Cl3	2.206(4)
	Angles (°)
O1–Fe1–Cl1	103.1(6)
O1–Fe1–Cl2	104.3(7)
O1–Fe1–Cl3	124.5(5)
Cl1–Fe1–Cl2	106.1(1)
Cl1–Fe1–Cl3	110.3(1)
Cl2-Fe1-Cl3	107.2(2)

Table S2 Selected bond lengths and angles of $[Fe_2Cl_6(\mu-O)]^{2-}$ anion.

2. Recycling Experiments

Fig. S1 Reuse of $(\dim_2[Fe_2Cl_6(\mu-O)]$ in the glycolysis of PET. Reagents and conditions: 2 (0.0425 mmol), PET (125 mg), EG (0.8 mL), 170 °C, 24 h.

3. Characterization of BHET product

Fig. S2 IR spectrum of BHET product.

Fig. S3 ESI-MS spectrum of BHET product.

4. X-ray crystal structure of BHET

	внет	
Empirical formula	$C_{12}H_{14}O_{6}$	
Formula weight	254.23	
Crystal system	triclinic	
Space group	Pl	
<i>a</i> (Å)	8.2252(3)	
<i>b</i> (Å)	9.3639(9)	
<i>c</i> (Å)	16.501(1)	
α (°)	87.306(7)	
β (°)	84.160(5)	
γ (°)	80.338(6)	
$V(Å^3)$	1245.8(2)	
Z	4	
ρ (g·cm ⁻³)	1.355	
$\mu (mm^{-1})$	1.844	
Reflections collected	14759	
Unique data/parameters	8599/330	
R	0.0435	
Goodness of fit (S) ^a	0.948	
$R_1^{b/w}R^{2c}$ [I>2 σ (I)]	0.0764/ 0.1975	
R_1^b/wR^2^c [all data]	0.0968/ 0.2097	

Table S3 Crystallographic data and structure refinement details of BHET.

^a S = $[\Sigma w(F_0^2 - F_c^2)^2 / (N_{obs} - N_{param})]^{1/2}$. ^b R₁ = $\Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; ^c wR2 = $[\Sigma w(F_0^2)^2 - F_c^2)^2 / \Sigma w(F_0^2)^2]^{1/2}$; w = $1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ where P = $(max(F_0^2, 0) + 2Fc^2)/3$, being a = 0.1502, b = 0.

Fig. S4 Crystal structure of the new BHET (P1) polymorph. (a) One of the four crystallographically independent BHET molecules showing the numbering scheme (i: -x, 1-y, 1-z). Thermal ellipsoids are drawn at 50% probability. (b) Perspective view of the crystal structure along the [100] direction. Hydrogen atoms were omitted for the sake of clarity.