Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary materials

Materials and reagents

The DNA sequence was synthesized and purified in Shanghai Biological Engineering Co., Ltd (China). The details are showed in the supplementary information. Mn-ZnS QDs were synthesized from MPA (J&K Chemical Co Ltd., China), Mn(Ac), Zn(Ac)₂·2H₂O, Mn(Ac)₂·4H₂O and Na₂S·9H₂O (all Tianjin Kemiou Chemical Reagent Co., Ltd.). Ultrapure water (18.2 M Ω cm) was produced by a WaterPro ultrapure water system (Labconco, US). All solutions were prepared in ultrapure water.

Instruments

The morphology of the QDs and QDs-DNA was observed on a JEM-2100 transmission electron microscope (TEM, JEOL Ltd. Japan). RTP was measured by a Cary Eclipse fluorescent spectrophotometer (Varian Co. Ltd, US), and pH was detected by a pH meter (Shanghai Lei-ci, China). The sizes and morphology of QDs were characterized on a Nano-ZS grain-size/Zeta potential analyzer (Malvern). Resonance light scattering (RLS) spectra were detected by the same fluorescence spectrophotometer at the scanning range of 200-700 nm.

Synthesis of Mn-ZnS QDs

Mn-ZnS QDs were prepared by an existing method (Miao et al., 2014, 2015). In each time, $Zn(Ac)_2$ (10 mL, 0.1 mol·L⁻¹), $Mn(Ac)_2$ (4 mL, 0.01 mol·L⁻¹) and MPA (100 mL, 0.04 mol·L⁻¹) solutions were added into a 250 mL three- necked bottle. The mixture was adjusted to pH 11 by adding a 1 mol·L⁻¹ NaOH solution and magnetically stirred for 30 min at room temperature and argon ventilation. Then 10 mL 0.1 mol·L⁻¹ of Na₂S was injected under air isolation. After argon ventilation under stirring for 20 min and ageing in air for 2 hours, the resulting solution was kept at 50 °C to form MPA-capped Mn-ZnS QDs. Then a same volume of ethanol was added to precipitate the QDs. The resulting solution was centrifuged, washed with ethanol, and dried in a vacuum oven for 24 h, forming powder Mn-ZnS QDs.

Name of oligonucleotide	Sequence of oligonucleotide	
Capture DNA 1 (S1)	5'-SH-(CH ₂) ₆ -CTT CAA CGA TG-3'	
Capture DNA 2 (S2)	5'-CGG CAG AGG CAT - (CH ₂) ₃ -SH- 3'	
Target DNA (complementary	5'-CAT CGT TGA AGA TGC CTC TGC CG-3'	
DNA)		
Single-base mismatch DNA	5'-CAT CGT TGA AGA TCC CTC TGC CG-3'	
	(Replace the 14th base "G" of complementary	
	DNA with "C")	
Random DNA	5'-TCA TTC CAG CTC GTA ACG CTA TAG	
	ATA-3'	

 Table S1. Sequences of oligonucleotides used in this study.

Co-existing substance	[Co-existing substance] /	Change of the RTP
	[Target DNA]	Intensity (%)
Na ⁺	500000	+4.3
K ⁺	100000	+3.7
Ca ²⁺	600	-4.6
Mg^{2+}	500	-2.8
Glucose	10000	-3.8
Glutamic acid	800	-4.2
Alanine	1000	-3.3

Table S2 Effect of co-existing substance (major biomolecules) on the RTP intensityof 50 nM target DNA.

Fig. S1. (a) The RTP emission spectra of Mn-ZnS QDs (10 mg L⁻¹). Inset: schematic illustration of electronic transition involved in the RTP emission from Mn-ZnS QDs. Solutions were prepared in PBS (0.02M, pH 7.4). (b) TEM image of MPA-capped Mn-ZnS QDs.

Fig. S2. The effects of different concentrations of QDs-DNA (P1 and P2) on the phosphorescence quenching rate of the exciton energy transfer system were investigated after the target DNA (20 nM) was added.