Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information for New Journal of Chemistry

Morphology tailored Triazine-based Crystalline Organic Polymer for Efficient Mercury Sensing

Dimitra Das^{‡a}, Anuradha Mitra^{‡b}, Rituparna Chatterjee^a, Sumanta Sain^c, and Kalyan

Kumar Chattopadhyay^{*a-b} (*‡* indicates equal contribution)

^aSchool of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032, India ^bDepartment of Physics, Jadavpur University, Kolkata 700032, India. ^cDepartment of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata- 700 032, India. *corresponding author E-mail: kkc.juphy@gmail.com; ‡ indicates equal contribution

Table of content

Section ES1 & Figure S1	Thermo-gravimetric analysis	Page 2
Section ES2 & Figure S2	XRD analysis	Page 3-4
Section ES3 & Figure S3	EDX analysis	Page 5
Section ES4 & Figure S4	BET analysis	Page 6
Section ES5 & Figure S5	¹ H-NMR spectral analysis	Page 7
Section ES6 & Figure S6	Molecular Weight determination from GPC	Page 8
Section ES7 & Figure S7	Zeta Potential analysis	Page 8
Section ES8 & Figure S8	Diffuse Reflectance Spectra and	
	Photoluminescence Spectra	Page 9
Section ES9 & Figure S9	MEG ₁₀ as metal ion sensor	Page 10
Section ES10 & Figure S10	XRD Analysis of Hg ⁺² @MEG ₁₀ complexes	Page 11
	at different pH values	
Section ES11 & Figure S11	XPS Analysis of Hg ⁺² @MEG ₁₀ post -sensing	Page 12
	References	Page 13

Section ES1: Thermo-gravimetric analysis

Fig. S1. (A) TGA curves of MEG_x polymers prepared at pH 6, 10 and 12. (B) TGA analysis and FESEM image (inset) of melamine-EG polymer prepared at pH 10 without hydrothermal treatment.

TGA analysis: The TGA curves of MEG_x , shown in Fig. S1A, reveal that the polymer prepared at pH 10 under hydrothermal treatment (MEG₁₀) is stable upto 300 °C whereas MEG₆ and MEG₁₂ both loose considerable amount of weight (~10-12%) before 100 °C due to removal of adsorbed water or ammonia (from NH₄OH medium), and finally start decomposing beyond 200 °C.

Section ES2: XRD analysis

Lattice parameters (Å)			Cell angle (deg)	Atom types	Fractional coordinates		
а	b	С	β		X	У	Z
				C1	0.1508	0.6056	-0.0054
				C2	0.0595	0.6847	0.3503
				C3	0.1268	0.7692	0.1470
				N1	0.2772	0.9509	-0.1753
				N2	0.1257	0.4270	0.4440
				N3	0.0574	0.9515	0.2355
				N4	0.0050	0.8184	0.2011
10.6036 7.5045	7.5045	7.2872	112.22	N5	0.1971	0.7794	-0.0348
				N6	0.1367	0.5153	0.2622
				H1	0.3703	0.4166	-0.0822
				H2	0.2446	0.4667	0.0038
			H3	0.0545	0.2026	0.6081	
				H4	0.0970	0.5337	0.5542
				Н5	-0.0020	0.5011	0.2144
				H6	0.0039	0.0300	0.0726

Table S1: Different structural parameters obtained by refining the XRD pattern of melamine.

The unit cell volume of polycrystalline melamine enhances from 517.25 Å³ to 536.81 Å³ with respect to its bulk counterpart primarily due the expansion of all the lattice parameters. However, the cell angle (β) reduces marginally from 113.30° to 112.22°. Coherently diffracting domain (crystallite) size and r.m.s. lattice strain of polycrystalline melamine are found to be 253.45 nm and 1.954×10^{-4} respectively.

Lattice parameters			Cell angle A (deg) t	Atom	Fractional	coordinates	
(Å)		types					
a	b	c	β		x	Y	Z
				C1	0.2798	0.4466	0.0052
				C2	0.2045	0.5430	0.3230
				C3	0.0216	0.8022	0.3561
				N1	0.0964	0.3628	-0.3370
				N2	0.0917	-0.0213	0.4738
				N3	0.0017	0.2037	0.1936
				N4	-0.0017	0.6743	0.5033
10.1243	8.2604	7.8860	116.85	N5	0.3465	0.0740	0.1861
				N6	0.1108	0.2726	0.1151
				H1	0.5662	0.7102	0.3356
				H2	0.0400	0.8303	-0.0151
				H3	0.0072	0.0072	0.7706
			H4	0.0125	0.1735	0.6265	
			H5	0.0353	0.8177	0.0061	
				H6	0.0270	0.1663	0.6257

Table S2: Different structural parameters obtained by refining the XRD pattern of MEG_{10} .

Fig.S2. (A) High angle XRD spectra of (a) pure melamine and (b) MEG_{10} . (B) low angle XRD shows mesoporous nature of MEG_{10} polymer.

Section ES3: EDX analysis

Fig.S3. (a) EDX spectra of MEG₁₀ showing the presence of C, N and O; corresponding elemental mapping images are shown in (b),(c) and (d) for C, N and O respectively.

Section ES4: BET analysis

Fig.S4. (A) Nitrogen adsorption-desorption isotherm showing classical type III isotherm and (B) corresponding BJH pore-size distribution curve of MEG_{10} polymer with BJH pore diameter of 3.611 nm and average pore diameter of 13.9 nm (total pore volume = 0.03707 cc/g for pores smaller than 65 nm; P/P₀ = 0.98530).

As routine analysis we carried out the sorption analysis using N₂ gas at 77K and 1 bar. A low surface area (~13.8 m²/g) may be due to the common diffusional issues of N₂ molecules inside narrow pores.^{1,2} The surface area can also be severly reduced due to the fusion of many pores probably during framework crystallization which results in structural variations like "pore expansion".³ However the polymer material may also be non-porous with large number of π stackings and the surface area as obtained from the BET analysis arises mainly due to the external surfaces.

Section ES5: ¹H-NMR spectral analysis

Fig.S5. (A) ¹H-NMR of MEG₁₀. Possible structures of the repeating unit created from the monomeric structure (B) are shown in (i) and (ii).

Section ES6: Molecular Weight determination from GPC:

Fig.S6. Molecular weight distribution of MEG₁₀ as obtained from GPC.

Section ES7: Zeta Potential Analysis

Section ES8: Diffuse Reflectance Spectra and Photoluminescence Spectra

Fig.S8. (A) Absorbance spectrum of MEG₁₀ at pH 6; and (B) Photoluminescence excitation and emission spectra of MEG₁₀.

Fig.S9. (A) Room temperature PL quenching of aqueous MEG₁₀ solution in presence of different concentration of Hg⁺² salt at 25 °C. (B) Change in PL intensity $[(I_0-I)/I]$ versus concentration of different transition metal ions ([MEG₁₀] = 0.5 mg/mL, 25 °C). (C) Room temperature PL quenching of aqueous MEG₁₀ solution in tap water in presence of different concentration of salts. (D) Change in PL intensity $[I_0/I]$ versus different concentration of Hg⁺² metal ions in tap water [MEG₁₀] = 0.5 mg/mL.

Fig. S10. (A) XRD analysis of MEG_{10} after Hg^{2+} adsorption at different pH values of 2, 6 and 12. Magnified XRD plot of the (1) (001) plane and (2) (-201) and (200) planes of MEG_{10} after Hg^{2+} adsorption.

Fig. S11. XPS spectra of MEG_{10} after Hg^{2+} adsorption: (A) XPS survey scan; Elemental scan of (a) C1s, (b) N1s, (c) O1s spectra and (d) Hg4f spectra. The individual deconvoluted profiles are also given.

References

1. H. Zhou, S. Xu, H. Su, M. Wang, W. Qiao, L. Ling and D. Long, *Chem. Comm.*, 2013, **49**, 3763-3765.

2. P. Kaur, J. T. Hupp and S. T. Nguyen, ACS Catal., 2011, 1, 819-835.

3. L.K. Shrestha, Y. Yamauchi, J. P. Hill, K. Miyazawa and K. Ariga, J. Am. Chem. Soc., 2012, **135**, 586-589.