Electronic Supporting Information (ESI)

A diboronic acid fluorescent sensor with fluorescence quenching

selective recognition of D-ribose

Hao Wang,^{‡a, b, c, d} Guiqian Fang,^{‡a, b, c, d} Hongxiao Wang^{a, b, c, d} Jindi Dou^{a, b, c, d} Zhancun Bian,^{a, b, c, d} Ying Li^{a, b, c, d} Huining Chai^{a, b, c, d} Zhongyu Wu^{*a, b, c, d} and Qingqiang Yao^{*a, b, c, d}

a. School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China

b. Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China

c. Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China

d. Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan 250062 , Shandong , China

e. Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China

*Corresponding authors: E-Mail: wu_med@foxmail.com (Zhongyu Wu), yao_imm@163.com (Qingqiang Yao)

1. Synthesis of 2-(4-boronophenyl)quinoline-4-carboxylic acid (1)

This paper reports on the synthesis of PBAQA according to the preliminary work of our group,¹ as shown in Scheme 1. Starting from p-bromoacetophenone and eosin, PBAQA was synthesized by Pfitzinger Reaction, carboxyl esterification, palladium catalysis, hydrolysis, and so on. ¹H NMR (600 MHz, CD₃OD) δ (ppm) (Fig. S1): 8.83 (d, J = 8.5 Hz, 1H), 8.51 (s, 1H), 8.25 (d, J = 8.4 Hz, 1H), 8.12 (d, J = 7.6 Hz, 2H), 7.99 – 7.82 (m, 3H), 7.77 (t, J = 7.7 Hz, 1H). 13C NMR (151 MHz, CD₃OD) δ (ppm) (Fig. S2): 166.85, 156.33, 136.82, 134.17, 131.61, 128.48, 126.88, 125.99, 124.38, 120.82. ESI-MS (Fig. S3): m/z 294.0 [M+1]⁺.

Scheme 1 Synthetic route of PBAQA.¹ (i) EtOH, KOH, rt, 8 h. (ii) HCl, rt, pH 3. (iii) SOCl₂, reflux, 4 h. (iv) Methanol, TEA, 0 °C, 1 h. (v) Pd-catalyst, KOAc, Bis(pinacolato)diboron, 75 °C, 8 h . (vi) NaIO₄, HCl, rt, 12 h. (vii) NaOH, 0 °C, 1 h. (viii) HCl, rt, pH 4.

Fig. S1 ¹H NMR spectrum of 1

Fig. S2 ¹³C NMR spectrum of 1

Fig. S3 ESI-MS spectrum of 1

Fig. S4 ¹H NMR spectrum of compound 4

Fig. S5 ¹³C NMR spectrum of compound 4

Fig. S6 HRMS spectrum of compound 4

Fig. S7 ¹H NMR spectrum of sensor 6

Fig. S8 ¹³C NMR spectrum of sensor 6

Fig. S9 ¹¹B NMR spectrum of sensor 6

Fig. S10 HRMS spectrum of sensor 6

Fig. S11 UV-Vis absorption spectra of sensor 1 and 6 (10⁻⁵ M) in DMSO/H₂O (1:100, v/v)

Fig. S12 Fluorescence response of sensor **6** (10^{-5} M) with increasing D-glucose concentration (0 M to 0.0559 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **6** 1/(*I* - *I*₀) versus 1/[D-glucose]

Fig. S13 Fluorescence response of sensor **6** (10⁻⁵ M) with increasing D-mannose concentration (0 M to 0.0559 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **6** $1/(I - I_0)$

Fig. S14 Fluorescence response of sensor **6** (10^{-5} M) with increasing D-fructose concentration (0 M to 0.0559 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **6** 1/(I - I₀) versus 1/[D-fructose]

Fig. S15 Fluorescence response of sensor **6** (10^{-5} M) with increasing D-galactose concentration (0 M to 0.0559 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **6** 1/(*I* - *I*₀) versus 1/[D-galactose]

Fig. S16 Fluorescence response of sensor **6** (10^{-5} M) with increasing D-glucosamine concentration (0 M to 0.0559 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **6** 1/(*I* - *I*₀) versus 1/[D-glucosamine]

Fig. S17 Fluorescence response of sensor **6** (10^{-5} M) with increasing sialic acid concentration (0 M to 0.0559 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **6** 1/(*I* - *I*₀) versus 1/[Sialic acid]

Fig. S18 Fluorescence response of sensor **6** (10⁻⁵ M) with increasing D-sorbitol concentration (0 M to 0.0559 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **6** $1/(I - I_0)$ versus 1/[D-sorbitol]

Fig. S19 Fluorescence response of sensor **6** (10^{-5} M) with increasing D-arabinose concentration (0 M to 0.0559 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **6** 1/(*I* - *I*₀) versus 1/[D-arabinose]

Fig. S20 Fluorescence response of sensor **1** (10^{-5} M) with increasing D-arabinose concentration (0 M to 0.0746 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **1** 1/(*I* - *I*₀) versus 1/[D-arabinose]

Fig. S21 Fluorescence response of sensor **1** (10^{-5} M) with increasing D-galactose concentration (0 M to 0.0746 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **1** 1/(*I* - *I*₀) versus 1/[D-maltose]

S22 Fluorescence response of sensor **1** (10^{-5} M) with increasing D-mannose concentration (0 M to 0.0749 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **1** 1/(*I* - *I*₀) versus 1/[D-mannose]

Fig. S23Fluorescence response of sensor **1** (10⁻⁵ M) with increasing D-frutose concentration (0 M to 0.0746 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **1** $1/(I - I_0)$ versus 1/[D-fructose]

Fig. S24 Fluorescence response of sensor **1** (10^{-5} M) with increasing D-ribose concentration (0 M to 0.0746 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **1** 1/(*I* - *I*₀) versus 1/[D-ribose]

Fig. S25 Fluorescence response of sensor **1** (10^{-5} M) with increasing D-glucose concentration (0 M to 0.0746 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **1** 1/(*I* - *I*₀) versus 1/[D-glucose]

S26 Fluorescence response of sensor **1** (10⁻⁵ M) with increasing D-sorbitol concentration (0 M to 0.0746 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **1** 1/($I - I_0$) versus 1/[D-sorbitol]

Fig.

Fig. S27 Fluorescence response of sensor **1** (10^{-5} M) with increasing D-glucosamine concentration (0 M to 0.0746 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **1** 1/(*I* - *I*₀) versus 1/[D-glucosamine]

Fig. S28 Fluorescence response of sensor **1** (10^{-5} M) with increasing sialic acid concentration (0 M to 0.0746 M) in DMSO/H₂O (1:100, v/v, pH = 7.4, phosphate buffer, 0.1 M) and Benesi–Hildebrand plot of sensor **1** 1/(*I* - *I*₀) versus 1/[Sialic acid]

1. H. Wang, G. Fang, K. Wang, Z. Wu and Q. Yao, *Analytical Letters*, 2018, 1-15.