Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electrocatalytic water oxidation studies of a tetranuclear Cu(II) complex with

cubane-like core Cu₄(µ₃-O)₄

Wei-Song Gao, Jin-Miao Wang, Ning-Ning Shi, Chang-Neng Chen, Yu-Hua

Fan^{*}, Mei Wang*

Fig. S1. Experimental (red) and theoretical (black) powder X-ray diffraction (PXRD) patterns of complex **1.**

Fig. S2. The linear plot of scan rate versus $\frac{4RTi_p}{FQ}$ for irreversible peak at $E_P = 0.38$ V process for complex 1.

Laviron's Method for the calculation of the number of electrons involved in the anodic and cathodic irreversible processes:

$$i_p = \frac{nFQv}{4RT}$$
 (Equation 1)
 $v = \frac{1}{n} \times \frac{4RTi_p}{FQ}$ (Equation 2)

In the equation:

- i_p = peak current
- n = number of electrons transferred in the irreversible processes
- F = Faraday constant
- Q = quantity of electric charge
- v =scan rate
- R = ideal gas constant

T = temperature

It is found that v has linear relationship with $\frac{4RTi_p}{FQ}$. According to Equation 2, the slope (k) of the v vs $\frac{4RTi_p}{FQ}$ plot is represented as: k = 1 / n (Equation 3), from which we can get n.

For complex **1**, the value of the slop k = 0.8688 for the irreversible peak at $E_P = 0.38$ V process can be obtained from figure S2. While, the k value for the peak at $E_P = -0.80$ V process can be got as 0.8206 from figure S3. Accordingly, the number of electrons involved in the anodic and cathodic irreversible peaks can both be calculated as approximately one.

Fig. S3. The *in situ* UV-vis spectroelectrochemistry of complex **1** during the controlled potential electrolysis at 1.35 V

	e v		
Cu2—O1	1.9404(15)	Cu1—O1(A)	1.9845(15)
Cu2—O3(A ^a)	1.9806(14)	Cu1—O3	1.9253(14)
Cu2—O5	1.9717(15)	Cu1—O0AA	1.9627(15)
Cu2—O4	2.3113(16)	Cu1—O2	2.3117(16)
Cu2—N2	1.9835(18)	Cu1—N1	1.9655(18)
O3—Cu2(A)	1.9805(14)	O1—Cu1(A)	1.9845(15)
O1(A)—Cu1—O2	92.09(6)	O1—Cu2—O3(A)	78.22(6)
O3—Cu1—O1(A)	78.47(6)	01—Cu2—O5	95.62(6)
O3—Cu1—O6	95.97(6)	O1—Cu2—O4	112.84(6)
O3—Cu1—O2	111.02(6)	01—Cu2—N2	167.84(6)
O3—Cu1—N1	168.30(7)	O3(A)—Cu2—O4	92.94(6)
00AA—Cu1—O1(A)	173.35(6)	O3(A)—Cu2—N2	94.60(6)
O0AA—Cu1—O2	93.33(6)	O5—Cu2—O3(A)	172.31(6)
O0AA—Cu1—N1	90.37(7)	O5—Cu2—O4	93.72(6)
N1—Cu1—O1(A)	94.50(6)	O5—Cu2—N2	90.66(7)
N1—Cu1—O2	78.30(7)	N2—Cu2—O4	77.02(6)
^a Symmetry transformations	s used to generate eq	uivalent atoms: A: - $x + 1$, y,	-z + 3/2.

Table S1. Selected bond lengths (Å) and angles (°) for complex 1.