Supplementary Information for (New Journal of Chemistry):

Self-assembly of manganese(I) based thiolato bridged dinuclear metallacycles: synthesis, characterization, cytotoxicity evaluation

and CO-releasing studies

Udit Kumar,^a Shilpa Jose,^a Dhanaraj Divya,^a Pitchavel Vidhyapriya,^b

Natarajan Sakthivel*b and Bala. Manimaran*a

^a Department of Chemistry, Pondicherry University, Puducherry, 605014, India.

Email: manimaran.che@pondiuni.edu.in

^b Department of Biotechnology, Pondicherry University, Puducherry, 605014, India.

Fig. S1 Overlay plot of UV-Vis spectra of compounds 1–7 in CH₂Cl₂ solvent.

Fig. S2¹H NMR spectrum of compound 1 in CDCl₃.

Fig. S3 ¹H NMR spectrum of compound 2 in CDCl₃.

Fig. S4 ¹H NMR spectrum of compound 5 in CDCl₃.

Fig. S5 ¹H NMR spectrum of compound 7 in CDCl₃.

Fig. S6 ¹³C NMR spectrum of compound 6 in CDCl₃.

Fig. S7 ESI-MS experimental (bottom) and theoretical (top) isotopic distribution patterns of $[{(CO)_3Mn(\mu-SC_6H_5)_2Mn(CO)_3}(\mu-bpp)]$ (1): $[M+H]^+$.

Fig. S8 ESI-MS experimental (bottom) and theoretical (top) isotopic distribution patterns of $[{(CO)_3Mn(\mu-SC_6H_5)_2Mn(CO)_3}(\mu-pdi)]$ (2): $[M+H]^+$.

Fig. S9 ESI-MS experimental (bottom) and theoretical (top) isotopic distribution patterns of $[{(CO)_3Mn(\mu-SC_6H_5)_2Mn(CO)_3}(\mu-edp)]$ (3): $[M+H]^+$.

Fig. S10 ESI-MS experimental (bottom) and theoretical (top) isotopic distribution patterns of $[{(CO)_3Mn(\mu-SC_6H_5)_2Mn(CO)_3}(\mu-bdp)]$ (4): $[M+H]^+$.

Fig. S11 ESI-MS experimental (bottom) and theoretical (top) isotopic distribution patterns of $[{(CO)_3Mn(\mu-SC_6H_5)_2Mn(CO)_3}(\mu-hdp)]$ (**5**): $[M+H]^+$.

Fig. S12 ESI-MS experimental (bottom) and theoretical (top) isotopic distribution patterns of $[{(CO)_3Mn(\mu-SC_6H_5)_2Mn(CO)_3}(\mu-pcadgd)]$ (6): $[M+H]^+$.

Fig. S13 ESI-MS experimental (bottom) and theoretical (top) isotopic distribution patterns of $[{(CO)_3Mn(\mu-SC_6H_5)_2Mn(CO)_3}(\mu-pcatgd)]$ (7): $[M+H]^+$.

Fig. S14 Cytotoxic activities of different concentrations (2, 5, 10, 25, and 50 μ M) of compound **1** in lung (A549), colon (HCT-15), and cervical (HeLa) cancer cells and normal human embryonic kidney (HEK 293) cells upon 48 h of treatment.

Fig. S15 Cytotoxic activities of different concentrations (2, 5, 10, 25, and 50 μ M) of compound **2** in lung (A549), colon (HCT-15), and cervical (HeLa) cancer cells and normal human embryonic kidney (HEK 293) cells upon 48 h of treatment.

Fig. S16 Cytotoxic activities of different concentrations (2, 5, 10, 25, and 50 μ M) of compound **4** in lung (A549), colon (HCT-15), and cervical (HeLa) cancer cells and normal human embryonic kidney (HEK 293) cells upon 48 h of treatment.

Fig. S17 Cytotoxic activities of different concentrations (2, 5, 10, 25, and 50 μ M) of compound **5** in lung (A549), colon (HCT-15), and cervical (HeLa) cancer cells and normal human embryonic kidney (HEK 293) cells upon 48 h of treatment.

Fig. S18 Cytotoxic activities of different concentrations (2, 5, 10, 25, and 50 μ M) of compound **6** in lung (A549), colon (HCT-15), and cervical (HeLa) cancer cells and normal human embryonic kidney (HEK 293) cells upon 48 h of treatment.

Fig. S19 Cytotoxic activities of different concentrations (2, 5, 10, 25, and 50 μ M) of compound **7** in lung (A549), colon (HCT-15), and cervical (HeLa) cancer cells and normal human embryonic kidney (HEK 293) cells upon 48 h of treatment.

Fig. S20 Dose response curves showing sigmoidal model fit with the deduced IC_{50} values of compound **1** for lung (A549), colon (HCT-15), cervical (HeLa) and human embryonic kidney (HEK 293) cells.

Fig. S21 Dose response curves showing sigmoidal model fit with the deduced IC_{50} values of compound **2** for lung (A549), colon (HCT-15), cervical (HeLa) and human embryonic kidney (HEK 293) cells.

Fig. S22 Dose response curves showing sigmoidal model fit with the deduced IC₅₀ values of compound **3** for lung (A549), colon (HCT-15), cervical (HeLa) and human embryonic kidney (HEK 293) cells.

Fig. S23 Dose response curves showing sigmoidal model fit with the deduced IC₅₀ values of compound **4** for lung (A549), colon (HCT-15), cervical (HeLa) and human embryonic kidney (HEK 293) cells.

Fig. S24 Dose response curves showing sigmoidal model fit with the deduced IC₅₀ values of compound **5** for lung (A549), colon (HCT-15), cervical (HeLa) and human embryonic kidney (HEK 293) cells.

Fig. S25 Dose response curves showing sigmoidal model fit with the deduced IC₅₀ values of compound **6** for lung (A549), colon (HCT-15), cervical (HeLa) and human embryonic kidney (HEK 293) cells.

Fig. S26 Dose response curves showing sigmoidal model fit with the deduced IC₅₀ values of compound **7** for lung (A549), colon (HCT-15), cervical (HeLa) and human embryonic kidney (HEK 293) cells.