Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information

Cu(II) and Zn(II) complexes with a poly-functional ligand derived from *o*-vanillin and thiophene. Crystal structure, physicochemical properties, theoretical studies and cytotoxicity assays against human breast cancer cells

María R. Rodríguez^a, Julián Del Plá^a, Lucía M. Balsa^a, Ignacio E. León^a, Oscar E. Piro^b, Gustavo A. Echeverría^b, Javier García-Tojal^c, Reinaldo Pis-Diez^a, Beatriz S. Parajón-Costa^a and Ana C. González-Baró^{a^{*}}

^a CEQUINOR (CONICET-CCT La Plata, UNLP), Bvd. 120 N°1465, B1900AVV La Plata, Argentina.

^b IFLP (CONICET-CCT La Plata, UNLP), CC 67, B1900AVV, La Plata, Argentina.

^c Departamento de Química, UBU, Pza. Misael Bañuelos s/n, E-09001 Burgos, España.

Table S1a. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2 x 10^3$) for complex CuL₂. U(eq) is defined as one third of the trace of the orthogonalized U^{jj} tensor.

Atom	x	у	Z	U(eq)
C(1)	10900(30)	2050(30)	6149(11)	32(1)
C(2)	11640(16)	1994(10)	7300(8)	57(2)
C(3)	9928(9)	1279(6)	7969(5)	47(1)
C(4)	7688(11)	721(6)	7279(4)	45(1)
C(5)	12335(4)	2671(2)	5169(2)	34(1)
C(6)	9626(4)	2474(2)	3412(2)	33(1)
C(7)	7738(4)	2702(2)	2581(2)	32(1)
C(8)	6572(4)	3784(2)	2854(2)	30(1)
C(9)	4638(4)	3912(2)	1982(2)	34(1)
C(10)	4012(4)	3026(2)	912(2)	43(1)
C(11)	5230(5)	1972(2)	644(2)	49(1)
C(12)	7038(4)	1813(2)	1463(2)	41(1)
C(13)	1910(5)	5274(2)	1448(2)	51(1)
Ν	10608(3)	3210(2)	4434(2)	31(1)
O(1)	7146(3)	4669(1)	3841(1)	40(1)
O(2)	3571(3)	4968(2)	2331(2)	45(1)
S	7782(2)	1118(2)	5828(1)	50(1)
Cu	10000	5000	5000	30(1)
C(1A)	10800(80)	2010(80)	6080(30)	32(1)
C(2A)	8320(30)	1280(20)	5965(17)	57(4)
C(3A)	7380(40)	740(20)	6935(15)	45(3)
C(4A)	9200(30)	1110(20)	7852(18)	46(3)
SA	12126(13)	2141(8)	7520(6)	47(1)

Atom	X	у	Z	U(eq)
C(1)	6302(2)	9269(13)	6842(3)	29(1)
C(2)	6659(5)	10224(16)	6478(5)	45(2)
C(3)	7195(3)	8868(11)	6500(4)	40(1)
C(4)	7246(2)	6861(10)	6902(3)	39(1)
C(5)	5709(1)	10223(5)	6949(1)	36(1)
C(6)	4974(1)	7899(5)	6176(1)	33(1)
C(7)	4524(1)	6038(4)	5885(1)	31(1)
C(8)	4272(1)	4309(4)	6253(1)	29(1)
C(9)	3831(1)	2575(5)	5888(1)	33(1)
C(10)	3661(1)	2599(5)	5204(1)	42(1)
C(11)	3914(1)	4335(5)	4850(1)	48(1)
C(12)	4333(1)	6013(5)	5180(1)	44(1)
C(13)	3166(1)	-845(5)	5937(1)	50(1)
Ν	5235(1)	8266(3)	6795(1)	29(1)
O(1)	4410(1)	4201(3)	6902(1)	39(1)
O(2)	3606(1)	928(3)	6271(1)	45(1)
S	6640(1)	6641(3)	7263(1)	41(1)
Zn	5000	6258(1)	7500	35(1)
C(1A)	6333(12)	9310(60)	6953(18)	29(1)
C(2A)	6566(11)	7020(50)	7128(15)	43(5)
C(3A)	7142(12)	6660(60)	7013(15)	40(4)
C(4A)	7245(15)	8370(60)	6580(20)	39(5)
SA	6696(6)	10680(20)	6407(7)	38(2)

Table S1b. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for complex ZnL₂. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S2a. Full bond lengths [Å] and angles [°] for complex CuL₂.

C(1)-C(2)	1.344(11)	C(2)-C(1)-C(5)	132.3(8)					
C(1)-C(5)	1.498(5)	C(2)-C(1)-S	107.9(5)					
C(1)-S	1.709(8)	C(5)-C(1)-S	119.6(5)					
C(2)-C(3)	1.362(10)	C(1)-C(2)-C(3)	119.3(7)					
C(3)-C(4)	1.349(5)	C(4)-C(3)-C(2)	109.0(6)					
C(4)-S	1.734(4)	C(3)-C(4)-S	112.6(4)					
C(5)-N	1.475(2)	N-C(5)-C(1A)	109(3)					
C(5)-C(1A)	1.478(12)	N-C(5)-C(1)	111.4(9)					
C(6)-N	1.288(2)	N-C(6)-C(7)	127.44(18)					
C(6)-C(7)	1.428(3)	C(8)-C(7)-C(12)	119.82(19)					
C(7)-C(8)	1.410(3)	C(8)-C(7)-C(6)	121.55(18)					
C(7)-C(12)	1.411(3)	C(12)-C(7)-C(6)	118.63(19)					
C(8)-O(1)	1.297(2)	O(1)-C(8)-C(7)	124.11(18)					
C(8)-C(9)	1.433(3)	O(1)-C(8)-C(9)	118.22(18)					
C(9)-O(2)	1.364(2)	C(7)-C(8)-C(9)	117.67(18)					
C(9)-C(10)	1.367(3)	O(2)-C(9)-C(10)	125.59(19)					
C(10)-C(11)	1.401(3)	O(2)-C(9)-C(8)	113.83(17)					
C(11)-C(12)	1.358(3)	C(10)-C(9)-C(8)	120.6(2)					
C(13)-O(2)	1.425(2)	C(9)-C(10)-C(11)	120.9(2)					
N-Cu	1.9919(16)	C(12)-C(11)-C(10)	119.8(2)					
O(1)-Cu	1.8866(13)	C(11)-C(12)-C(7)	121.2(2)					
C(1A)-C(2A)	1.35(2)	C(6)-N-C(5)	115.89(17)					
C(1A)-SA	1.71(2)	C(6)-N-Cu	123.48(14)					
C(2A)-C(3A)	1.360(18)	C(5)-N-Cu	120.59(12)					
C(3A)-C(4A)	1.326(14)	C(8)-O(1)-Cu	129.01(13)					
C(4A)-SA	1.764(15)	C(9)-O(2)-C(13)	117.33(17)					
		C(1)-S-C(4)	91.2(3)					
		O(1)-Cu-N	91.25(6)					
		O(1)-Cu-N#1	88.75(6)					
		C(2A)-C(1A)-C(5)	129.5(19)					
		C(2A)-C(1A)-SA	110.1(10)					
		C(5)-C(1A)-SA	120.4(16)					
		C(1A)-C(2A)-C(3A)	118.1(16)					
		C(4A)-C(3A)-C(2A)	108.8(16)					
		C(3A)-C(4A)-SA	114.3(15)					
		C(1A)-SA-C(4A)	88.6(9)					
Symmetry transformation: (#1) -x+2, -y+1, -z+1								

C(1)-C(2)	1.342(9)	C(2)-C(1)-C(5)	130.1(6)
C(1)-C(5)	1.503(4)	C(2)-C(1)-S	110.0(4)
C(1)-S	1.727(5)	C(5)-C(1)-S	119.8(3)
C(2)-C(3)	1.403(10)	C(1)-C(2)-C(3)	115.2(6)
C(3)-C(4)	1.346(5)	C(4)-C(3)-C(2)	111.5(5)
C(4)-S	1.727(4)	C(3)-C(4)-S	111.9(4)
C(5)-N	1.474(3)	N-C(5)-C(1A)	113.9(16)
C(5)-C(1A)	1.492(14)	N-C(5)-C(1)	110.8(4)
C(6)-N	1.288(3)	N-C(6)-C(7)	128.3(2)
C(6)-C(7)	1.442(3)	C(8)-C(7)-C(12)	119.8(2)
C(7)-C(8)	1.409(3)	C(8)-C(7)-C(6)	124.34(19)
C(7)-C(12)	1.419(3)	C(12)-C(7)-C(6)	115.8(2)
C(8)-O(1)	1.307(2)	O(1)-C(8)-C(7)	124.6(2)
C(8)-C(9)	1.431(3)	O(1)-C(8)-C(9)	118.0(2)
C(9)-O(2)	1.371(3)	C(7)-C(8)-C(9)	117.37(19)
C(9)-C(10)	1.375(3)	O(2)-C(9)-C(10)	124.1(2)
C(10)-C(11)	1.396(4)	O(2)-C(9)-C(8)	114.78(18)
C(11)-C(12)	1.357(4)	C(10)-C(9)-C(8)	121.1(2)
C(13)-O(2)	1.420(3)	C(9)-C(10)-C(11)	120.5(2)
N-Zn	1.9971(18)	C(12)-C(11)-C(10)	120.0(2)
O(1)-Zn	1.9211(15)	C(11)-C(12)-C(7)	121.2(2)
C(1A)-C(2A)	1.35(2)	C(6)-N-C(5)	116.60(19)
C(1A)-SA	1.73(2)	C(6)-N-Zn	120.90(16)
C(2A)-C(3A)	1.398(19)	C(5)-N-Zn	122.49(14)
C(3A)-C(4A)	1.343(17)	C(8)-O(1)-Zn	125.94(15)
C(4A)-SA	1.722(18)	C(9)-O(2)-C(13)	117.45(18)
		C(1)-S-C(4)	91.3(2)
		O(1)-Zn-O(1)#1	110.23(10)
		O(1)-Zn-N	95.88(7)
		O(1)-Zn-N#1	120.81(7)
		N-Zn-N#1	114.99(10)
		C(2A)-C(1A)-C(5)	127(2)
		C(2A)-C(1A)-SA	110.2(14)
		C(5)-C(1A)-SA	117.8(15)
		C(1A)-C(2A)-C(3A)	113.3(18)
		C(4A)-C(3A)-C(2A)	110(2)
		C(3A)-C(4A)-SA	113.0(18)
		C(1A)-SA-C(4A)	89.8(11)

Table S2b. Full bond lengths [Å] and angles [°] for complex ZnL₂.

Symmetry transformation: (#1) -x+1, y, -z+3/2.

Atom	U ¹¹	U ²²	U33	U ²³	U ¹³	U ¹²
C(1)	34(2)	29(2)	35(2)	5(2)	-2(1)	14(1)
C(2)	39(3)	54(3)	66(5)	-6(3)	-17(3)	3(3)
C(3)	51(3)	51(3)	42(2)	12(2)	-6(2)	16(3)
C(4)	48(3)	46(2)	46(3)	23(3)	10(2)	9(2)
C(5)	34(1)	33(1)	39(1)	6(1)	-3(1)	14(1)
C(6)	37(1)	29(1)	35(1)	6(1)	5(1)	10(1)
C(7)	34(1)	31(1)	29(1)	6(1)	1(1)	4(1)
C(8)	29(1)	32(1)	27(1)	7(1)	-1(1)	2(1)
C(9)	30(1)	36(1)	34(1)	11(1)	-1(1)	2(1)
C(10)	39(1)	54(1)	33(1)	9(1)	-8(1)	3(1)
C(11)	54(2)	50(1)	32(1)	-6(1)	-7(1)	3(1)
C(12)	49(1)	37(1)	36(1)	2(1)	1(1)	9(1)
C(13)	43(1)	61(2)	56(2)	25(1)	-9(1)	14(1)
Ν	32(1)	32(1)	30(1)	7(1)	-2(1)	9(1)
O(1)	42(1)	40(1)	38(1)	-4(1)	-13(1)	17(1)
O(2)	43(1)	47(1)	46(1)	8(1)	-14(1)	16(1)
S	34(1)	57(1)	56(1)	16(1)	-6(1)	-2(1)
Cu	33(1)	29(1)	29(1)	4(1)	-5(1)	9(1)
C(1A)	35(2)	29(2)	34(2)	5(2)	-2(1)	14(1)
C(2A)	45(3)	80(7)	42(3)	27(4)	-10(2)	-6(3)
C(3A)	39(3)	57(6)	41(4)	20(4)	-4(2)	9(3)
C(4A)	38(3)	64(7)	39(3)	19(4)	-3(2)	12(4)

Table S3a. Anisotropic displacement parameters ($Å^2 \times 10^3$) for CuL₂. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$

Atom	U ¹¹	U ²²	U33	U ²³	U13	U ¹²
C(1)	34(1)	28(1)	21(3)	-6(2)	0(2)	-4(1)
C(2)	57(4)	32(4)	40(4)	-1(2)	4(3)	-8(3)
C(3)	39(2)	43(4)	38(3)	-8(2)	11(2)	-14(2)
C(4)	30(2)	49(3)	38(3)	-3(2)	10(2)	6(2)
C(5)	37(1)	32(1)	38(1)	-4(1)	6(1)	1(1)
C(6)	37(1)	33(1)	29(1)	3(1)	11(1)	2(1)
C(7)	33(1)	32(1)	26(1)	-1(1)	3(1)	1(1)
C(8)	29(1)	31(1)	27(1)	-1(1)	4(1)	5(1)
C(9)	36(1)	31(1)	32(1)	-1(1)	7(1)	0(1)
C(10)	48(1)	39(2)	32(1)	-7(1)	0(1)	-7(1)
C(11)	64(2)	54(2)	21(1)	-2(1)	1(1)	-9(2)
C(12)	58(2)	46(2)	26(1)	2(1)	8(1)	-8(1)
C(13)	49(2)	45(2)	59(2)	-10(1)	17(1)	-15(1)
Ν	29(1)	29(1)	29(1)	-2(1)	5(1)	3(1)
O(1)	49(1)	44(1)	22(1)	1(1)	5(1)	-11(1)
O(2)	53(1)	44(1)	38(1)	-3(1)	9(1)	-18(1)
S	41(1)	39(1)	44(1)	9(1)	11(1)	8(1)
Zn	39(1)	40(1)	22(1)	0	3(1)	0
C(1A)	34(2)	28(2)	21(3)	-6(2)	0(2)	-4(1)
C(2A)	48(6)	35(3)	49(11)	7(5)	19(7)	6(4)
C(3A)	45(5)	36(5)	40(8)	5(5)	14(5)	5(4)
C(4A)	44(5)	35(6)	38(9)	2(6)	12(6)	3(5)

Table S3b. Anisotropic displacement parameters (Å² x 10³) for ZnL₂. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Atom	X	У	Z	U(eq)
H(2)	13302	2437	7634	68
H(3)	10251	1190	8773	57
H(4)	6249	181	7551	54
H(5AA)	13799	3373	5541	41
H(5AB)	13025	2018	4639	41
H(5BC)	13748	3376	5583	41
H(5BD)	13092	2045	4640	41
H(6)	10213	1707	3189	40
H(10)	2761	3126	353	51
H(11)	4802	1381	-91	58
H(12)	7828	1107	1284	50
H(13A)	2856	5427	738	77
H(13B)	1336	6050	1790	77
H(13C)	419	4551	1220	77
H(2A)	7293	1153	5245	69
H(3A)	5729	194	6952	54
H(4A)	8948	845	8605	55

Table S4a. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for complex CuL₂.

Table S4b. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for complex ZnL₂.

Atom	Х	у	Z	U(eq)
H(2)	6559	11681	6230	54
H(3)	7479	9301	6266	48
H(4)	7568	5728	6976	47
H(5AA)	5771	10748	7407	43
H(5AB)	5575	11666	6666	43
H(5BC)	5720	10928	7381	43
H(5BD)	5597	11554	6623	43
H(6)	5091	8971	5878	39
H(10)	3374	1450	4976	50
H(11)	3796	4342	4388	58
H(12)	4499	7166	4940	52
H(13A)	2804	14	5699	76
H(13B)	3068	-1961	6256	76
H(13C)	3331	-1786	5630	76
H(2A)	6364	5790	7307	51
H(3A)	7416	5412	7207	48
H(4A)	7578	8322	6397	46

Table S5a.Hydrogen bonds for complex CuL_2 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(5)-H(5A)O(1)#1	0.97	2.23	2.792(5)	115.5

Symmetry transformation: (#1) -x+2, -y+1, -z+1

Table S5b.Hydrogen bonds for complex ZnL₂ [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(4)-H(4)S#2	0.93	2.99	3.858(5)	156.1
C(5)-H(5A)O(1)#3	0.97	2.43	3.264(5)	144.0
	((()	1/0 0/		4 0

Symmetry transformations: (#2) -x+3/2, y-1/2, -z+3/2; (#3) -x+1, y+1, -z+3/2.

Table S6. Vibrational spectra of $[Cu(oVATPNH2)_2]$ and $[Zn(oVATPNH2)_2]$. Assignment and comparison with the free ligand data (wavenumbers in cm⁻¹).

		oVA	TPNH2 (a)		Cu(oVATPNH2) ₂		Zn(oVATPNH2) ₂				
IR.	Raman	Calc	Assignment	IR	Raman	Calc.	Assignment	IR	Raman	Calc	Assignment
3003 vw	3005 w	3153	ν O-H								
2923 sh	2928 m	3045	$v_{as} CH_2$	2907 w	2913 vw	3140/3118	$v_{as} CH_2$	2903 m		3079	$v_{as} CH_2$
1631 vs	1635 vs	1685	ν C=N	1618 vs	1624 s	1665/1659	v C=N	1615 vs	1628 s	1660/1651	ν C=N
1583 sh	1587 m	1660	ν ring (oVA)	1599 m	1602 sh		u ring (a)(A)			1642	vring(a)(A)
		1618	+ δ O-H	1545 m	1546 m	1640/1639	V ling (UVA)	1544 m	1546 m	1640	Villig (OVA)
1462 vs	1472 m	1505	$\delta_{as} CH_3$	1476 s	1478 vs	1506/1505	$\delta_{as} CH_3$	1467 s	1467 s	1504	$\delta_{as} CH_3$
	1440 m	1493	$\delta_{as} CH_3$	1447m	1437 s	1494/1491	$\delta_{as} CH_3$	1441 s	1445 vs	1492	$\delta_{as} CH_3$
1415 m,b		1480	δCH_2	1405 w	1404 sh	1489/1484	δCH_2	1407 m	1420 sh	1491/1474	$\delta CH_2 + \delta_s CH_3$
		1460	$\delta \text{ O-H} + \delta_{s} \text{ CH}_{3} + \delta \text{ C-H(oVA)}$)		1472	$v_{\text{ coord. ring}}$ + δ CH ₂ + δ_{s} CH ₃			1465/1461	$v_{\text{ coord. ring}} + \delta CH_2 + \delta_s CH_3$
1361 m	1365 w	1370	δ O-H + ν ring (oHVA)	1363 m	1373 m	1462/1464	ν ring (oVA + Tph)+ δ s CH ₂	1353 w,b	1360 s	1393/1394	v ring (oVA + Tph) +
					1370 sh	1440/1433	δ CH (ArCH)				δ C-H (Ar-CH) + ρ_w CH ₂
				1357 sh	1360 sh	1398/1393	$\rho_w CH_2 + \delta CH (Tph)$				
							+ δ C-H (Ar-CH)				
1333 m-w	/ 1337 s	1355	ρ _w CH ₂	1342 m		1359	ρ _w CH ₂	1337 m	1007	1350	ρ _w CH ₂
1313 m		1315	v C-O (ArOH)	1319 w	1323 w	1377/1366	v C-O (Ar-O)	1325 sh	1327 m	1375/1373	v C-O (Ar-O)
			+ 8 C-H (oVA)				+ δ C-H (oVA)				+ 8 C-H (oVA)
4000 -		4000				4000/4000	+ $\rho_w CH_2$			4004/4000	+ $\rho_w CH_2$
1269 S		1286	δ C-H (Tpn)			1302/1292	δ CH-(1pn) + ρ_r CH ₂			1394/1289	δ CH-(Tpn)
1255 VC	1259 \/	1292	$+ \rho_r CH_2$	1245 c	1245 ch	1260/1267		1241 c	1246 ch	1071	+ $\rho_r CH_2$
1200 15	1230 VW	1202		1240.5	1240 511	1209/1207	$V C - OC H_3 + 0 CH (0 Va)$	12415	1240 511	1271	
12/12 ch	1220 m	1168		1225 s h	1225 m-w	1165/1158		1212 s h	1215 m	1166	
1081 m-s	1088 m	1120	V C-CH ₂	1082 w	1070 w	1130/1136	$V \bigcirc O \bigcirc O \square_2$	1080 m	1082 w	1130	$\sqrt{C-CH_2}$
100111-3	1000 111	1123	+ $\delta ring (\alpha)(\Lambda)$	1075 w	1075 W	1133/1130	δ ring (0)(2)	1000 111	1002 W	1107	δ ring (δ)(2)
853 mw	856 vw	842	$\sim C-H$ (Tpb)	864 w	866 w	868	$\sim C_{-H}$ (Tpb)	855 m	860 vw	841	$\sqrt{C-H}$ (Tpb)
000 1111	000 111	0.2	y 8 m (1911)	849 sh	857 sh	857	y e n (rph)	000 111	000 111	011	
832 ms.b	838 w	851	γ Ο-Η								
750 mw	757 w	762	v S-CH	750 sh	754 w	763	v S-CH + δ ring(oVa)	746 sh	751 w	753	v S-CH +
			+ δ C-C-C(CH ₂)			753/752	v S-CH				δ ring(oVa)
736 s	735 m	740	γ C-H (oVÀ)	734 m		745/744	γ C-H (oVA)	736 m		745	γ C-H (oVÁ)
725 s		742	δ ring (oVA)	703 m		762	δ ring (oVa)	715 m		764/ 762	δ ring [oVA + Tph]
								695 sh			
615 vw	620 m	627	δ ring [oVA + Tph]	614 vw	607 w	627/621	δ ring [oVA + Tph]	611 w	604 w	621	δ ring [oVA + Tph]
						605	δ coord ring	602 sh		601	δ coord ring
				489 vw		565	v _{as} O-Cu-O			568	v _{as} O-Zn-O
				475	471 w	550		477 vvw		500	
				475 VW		559	v _s O-Cu-O	450		563	v _s O-Zn-O
				453 VW	454 sh	420	v _{as} N-Cu-N	458 VW	461 vw	461	v _{as} N-Zn-N
				429 VW	100	401 270	vs N-Cu-N	443 VW	441 SN	455 444	v _s N-Zn-N
					408 VW	3/0	γ coord. ring	408 VW		411	γ coord. ring

(a) Data extracted from ref 19. vs: very strong, s: strong, m: medium, w: weak, vw: very weak, b: broad, sh: shoulder: Tph: thiophene

Figure S1. IR (top) and Raman (bottom) spectra of both complexes in the 3700-400 cm⁻¹ spectral region.

Figure S2. EPR spectra of $[Cu(oVATPNH2)_2]$ (I) at different temperatures: 150 K (solid line) and 298 K (dotted line). **a)** 0 – 700 mT region; **b)** 250 – 350 mT region. Experimental details: modulation amplitude 0.1 mT, time constant 40.96 ms, conversion time 327.68 ms, gain 1 10³ (short ranges) or 1 10⁴ (long 0 – 700 mT ranges) and power 20 mW. Microwavefrequencies: 9.4258 (298 K), 9.4261 (250 K), 9.4273 (150 K), 9.4281 (298 K), 9.4285 GHz (150 K)

Figure S3. EPR spectrum of of an approximately 5 10^{-4} M solutionof [Cu(oVATPNH2)₂] at RT (black line) together with the best fit (red line). Experimental details: modulation frequency = 100 kHz, modulation amplitude = 0.5 mT, time constant = 81.92 ms, conversion time = 327.68 ms, gain = 6,3 x 104, power = 20.0 mW, microwave frequency = 9.4239 GHz. Fitting parameters: Gaussian-type signal, giso = 2.115, Aiso = 8.2 mT (185.8 10-4 cm-1) (linewidth H = 4.0 mT).

Figure S4. EPR spectrum of an approximately 5 10^{-4} M solution of $[Cu(oVATPNH2)_2]$ in a (1:1) (DMSO:ethanol) mixture of solvents at 150 K (black line) together with the best fit (red line). Experimental details: modulation frequency = 100 kHz, modulation amplitude = 0.5 mT, time constant =81.92 ms, conversion time = 327.68 ms, gain = 6,3 x 104, power = 2.0 mW, microwave frequency = 9.4255 GHz. Fitting parameters: (a) 50 % Gaussian/Lorentzian-type signal, $g_{\parallel} = 2.224$; $A_{\parallel} = 18.5$ mT (192.1 10-4 cm-1) (linewidth $H_{\parallel} = 4.0$ mT), $g_{\perp} = 2.055$ (linewidth $H_{\perp} = 5.0$ mT).

Figure S5. Molecular orbitals involved in the electronic transitions of [Cu(oVATPNH2)₂] (CuL₂).

Figure S6. Molecular orbitals involved in the electronic transitions of [Zn(oVATPNH2)₂] (ZnL₂)

OMS description

Complex CuL₂: It can be seen in Figure S2 that the HOMO_{α} – 5 of is mainly localized on one oVATPNH2 ligand, whereas the HOMO_{α} – 6 is localized on the other oVATPNH2 ligand. In both cases, a small contribution from the metal ion is observed. The HOMO_{α} – 4 is located in the two oVA fragments and on one TPNH2 fragment, with contributions from the N atom of the second TPNH2 fragment and from the metal ion. The HOMO_{α} is strongly localized on both oVA fragments with a minor contribution from the Cu(II) ion. The LUMO_{α} is located in one oVA fragment and on the N atom of the TPNH2 fragment of the same ligand. The LUMO_{α} + 1 is

similar to the LUMO_{α} but it is located in the other ligand. The LUMO_{α} + 2 is located in one TPNH2 fragment. The HOMO_{β} – 10 is localized on all the O atoms, the C=N double bond and the Cu(II) ion. The HOMO_{β} – 8 is located in the O atom of the coordination sphere and the N atom, with a minor contribution from the metal ion. The HOMO_{β} – 4 is localized on the two ligands, whereas HOMO_{β} – 3 is predominantly located in one ligand only. The HOMO_{β} is mainly located in the two o-VA rings and in the four O atoms. The three MO's also present a small contribution from the metal ion. The LUMO_{β} is localized on the Cu(II) ion and on the four atoms bound to it. The LUMO_{β} + 2 is mainly located in the oVA ring, the O atom of the coordination sphere and the N atom of one ligand only.

Complex ZnL₂: Figure S5 shows that the HOMO – 8 is located in the metal ion and in the atoms bound to it. The HOMO – 5 and the HOMO – 2 exhibits almost the same localization pattern, which involves the two ligands. The HOMO and the LUMO present very similar localization patterns, although the first one is bonding and the second one is anti-bonding in character. They are located in the two oVA rings, the four O atoms and the N atoms of the TPNH2 fragments.

Figure S7. ¹H NMR spectrum recorded for ZnL_2 in CD_3SOCD_3 at 25 ⁰C.

Figure S9. 2D NMR 1 H- 13 C HSQC spectrum for ZnL₂ in CD₃SOCD₃ at 25 0 C.

Figure S10. 2D NMR ¹H-¹³C HMBC spectrum for ZnL₂ in CD₃SOCD₃ at 25 ⁰C

Figure S11. Thermal analysis of the solid complexes $[Cu(oVATPNH2)_2]$ (**CuL**₂) and $[Zn(oVATPNH2)_2]$ (**ZnL**₂)