1 Supporting Information for

2	Single Particle ICP-MS and GC-MS Provide New
3	Insight into the Forming Mechanisms for AgNPs
4	Green Synthesis
5	
6	Huiling Zhang, ^{a,1} Yuxiong Huang, ^{b,c,1} Jianqiang Gu, ^a Arturo Keller, ^b Yuwei Qin, ^b Yue
7	Bian, ^d Kun Tang, ^d Xiaolei Qu, ^a Rong Ji, ^{a*} Lijuan Zhao ^{a*}
8	
9	
10	^a State Key Laboratory of Pollution Control and Resource Reuse, School of Environment,
11	Nanjing University, Nanjing 210023, China
12	^b Bren School of Environmental Science & Management, University of California, Santa
13	Barbara, California 93106-5131, United States
14	^c Shenzhen Environmental Science and New Energy Technology Engineering
15	Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, P. R. China.
16	^d School of Electronic Science and Engineering, Nanjing University, Nanjing 210023,
17	China
18	¹ H. Z. and Y. H. contributed equally to this manuscript, considered as co-first authors.
19	
20	* <i>Corresponding author</i> . Tel: +86 025-8968 0581; fax: +86 025-8968 0581.
21	Email address: ji@nju.edu.cn, ljzhao@nju.edu.cn

Table S1. Relative abundance of metabolites before and after reaction during formation

23 of AgNPs. (The relative abundance values were reported as the "average ± standard

Matchalitag	Cleasification	Relative A	Fold	
Wietadontes	Classification	Before	After	
Alanine	Amino acid	7.89 ± 0.49	7.21±0.03	1.1
Beta-Mannosylglycerate	Ester	485.13±25.25	444.95±38.14	1.1
N-Acetylisatin	Amino acid	0.96 ± 0.05	0.88 ± 0.15	1.1
N-Methyl-L-Glutamic Acid		13.02±0.28	12±1	1.1
Ethanolamine		253.05±10.65	234.51±9.32	1.1
Fucose	Sugar	24.85±0.79	23.2±1.95	1.1
D-Arabitol	Sugar alcohol	10.23±0.01	9.66±0.24	1.1
Aminooxyacetic Acid	Organic acid	2.96 ± 0.05	2.81±0.07	1.1
Sorbitol	Sugar alcohol	5.15 ± 0.01	4.89±0.12	1.1
Valine	Amino acid	189.21±1.34	180.72 ± 3.28	1.0
D-Talose	Sugar	127.73±5.17	122.64±18.29	1.0
Galactinol	-	266.67±8.32	259.61±0.01	1.0
Glycine	Amino acid	305.63±1.75	299.35±0.65	1.0
Glucosaminic Acid	Organic acid	2.39 ± 0.04	2.35 ± 0.05	1.0
Glycerol	Alcohol	264.3±1.2	262.4 ± 2.88	1.0
Norvaline	Amino acid	0.39 ± 0.05	0.39 ± 0.01	1.0
3-Hydroxypyridine		1.68 ± 0.18	1.67 ± 0.01	1.0
Diglycerol	Alcohol	5.37 ± 0.05	5.35±0.15	1.0
1,5-Anhydroglucitol	Sugar alcohol	0.24 ± 0.02	0.24 ± 0.01	1.0
22-Ketocholesterol	-	1.76 ± 0.41	1.76 ± 0.04	1.0
O-Succinylhomoserine		0.23±0	0.23±0	1.0
2-Furoic Acid	Organic acid	1.84 ± 0.24	1.84 ± 0.08	1.0
Gluconic Lactone	Ester	7.45±0.15	7.65±0.01	1.0
Citramalic Acid	Organic acid	26.36±0.13	27.23±0.58	1.0
Ribonic Acid, Gamma-Lactone	C	0.74 ± 0.02	0.78 ± 0.02	1.0
Mannitol	Sugar alcohol	11.34±0	11.88±0.39	1.0
Tyrosine	Amino acid	32.89±0.09	34.58±1.9	1.0
Citric Acid	Organic acid	401.56±12.5	423.38±2.28	0.9
D-Erythro-Sphingosine	C	15.61±0.45	16.65±0.25	0.9
Nicotinic Acid	Organic acid	15.49 ± 2.03	16.56±0.07	0.9
3-Hydroxybutyric Acid	Organic acid	0.17 ± 0.01	0.18 ± 0.01	0.9
2-Methylglutaric Acid	Organic acid	0.96 ± 0.02	1.05 ± 0	0.9
Leucrose	Sugar	0.16±0.01	0.17 ± 0.01	0.9
O-Acetylserine	C	4.15±0.18	4.56±0.23	0.9

24 deviation" of three replicates.)

Number	pН	Temperature /°C	Time/h
1	4.02	25	0.5
2	4.02	25	1
3	4.02	25	2
4	4.02	25	4
5	4.02	50	0.5
6	4.02	50	1
7	4.02	50	2
8	4.02	50	4
9	4.02	80	0.5
10	4.02	80	1
11	4.02	80	2
12	4.02	80	4
13	5.86	25	0.5
14	5.86	25	1
15	5.86	25	2
16	5.86	25	4
17	5.86	50	0.5
18	5.86	50	1
19	5.86	50	2
20	5.86	50	4
21	5.86	80	0.5
22	5.86	80	1
23	5.86	80	2
24	5.86	80	4
25	10.01	25	0.5
26	10.01	25	1
27	10.01	25	2
28	10.01	25	4
29	10.01	50	0.5
30	10.01	50	1
31	10.01	50	2
32	10.01	50	4
33	10.01	80	0.5
34	10.01	80	1
35	10.01	80	2
36	10.01	80	4

Table S2. Trials to screen optimal reaction pH, temperature, time for synthesis of AgNP.

Table S3. Trials to screen optimal ratio of AgNO₃ and leaf extract for green synthesis of

31 AgNP.

Number	pН	Temperature /°C	Time/h	Ag/leaf extracts
1	10.02	80	0.5	1:4
2	10.02	80	1	1:4
3	10.02	80	2	1:4
4	10.02	80	4	1:4
5	10.02	80	0.5	1:1
6	10.02	80	1	1:1
7	10.02	80	2	1:1
8	10.02	80	4	1:1
9	10.02	80	0.5	2:1
10	10.02	80	1	2:1
11	10.02	80	2	2:1
12	10.02	80	4	2:1
13	10.02	80	0.5	4:1
14	10.02	80	1	4:1
15	10.02	80	2	4:1
16	10.02	80	4	4:1

Figure S1. The color change of the Ag^+ solution for optimal green synthesis screening.

44	Trials number with	detailed reaction	pH, temperature,	time were l	isted in Table	S2.
----	--------------------	-------------------	------------------	-------------	----------------	-----

- L

Figure S2. The color change of the Ag^+ solution for optimal green synthesis screening.

- 57 Trials number with the detailed ratio of AgNO₃ to leaf were listed in Table S3.

63 Figure S3. Optimized reaction conditions including pH, temperature, reaction time and

hydrodynamic size of AgNP was determined at day 0, 7, 14 and 36. AgNPs was

fabricated by adding 1.25 mL AgNO₃ NPs to 1.25 mL cucumber leaf extracts at pH 10,

react for 4 h at 80 $^{\circ}$ C.

