Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information for

Multi-point Interaction Based Recognition of Fluoride Ion by *tert*-Butyldihomooxacalix[4]arenes Bearing Phenolic Hydroxyls and Thiourea

Ling-Ling Zhao,[†] Xiao-Song Yang,[†] Hui Chong,^{*†} Yang Wang[†] and Chao-Guo Yan^{*†}

[†]School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China

	covered fail to confirm the δ ; b: $\Delta\delta$ calculated based on three equivalents of TBAC.														
				Aromati	с			Ν	Н		Met	hylene Bri	dge		
δ/ppm (0.0 Equiv. TBAC)	7.300	7.172	7.124	7.093	6.997	6.867	6.817	7.543	5.069	4.368	4.259	4.200	4.137	3.997	
δ/ppm (5.0 Equiv. TBAC)	7.299	7.179	7.123	7.090	6.996	6.871	6.818	7.627	/a	4.371	4.293	4.213	4.140	4.003	
Δδ/ppm	-0.001	0.007	-0.001	-0.003	-0.001	0.004	0.001	0.084	0.063 ^b	0.003	0.034	0.013	0.003	0.006	

Table S1 Representative δ and $\Delta\delta$ of **2a** with addition of TBAC (CDCl₃, 400 MHz, 298K, using CDCl₃ 7.26 ppm as reference) Note a: peak

Table S2 Representative δ and $\Delta\delta$ of **2a** with addition of TBAB (CDCl₃, 400 MHz, 298K, using CDCl₃ 7.26 ppm as reference)

		Aromatic					NF	ł			Methylen	e Bridge		
δ/ppm (0.0 Equiv. TBAB)	7.300	7.172	7.124	7.092	6.997	6.866	7.544	5.070	4.719	4.368	4.259	4.200	4.136	3.997
δ/ppm (5.0 Equiv. TBAB)	7.298	7.180	7.122	7.087	6.993	6.870	7.632	5.029	4.729	4.371	4.294	4.213	4.138	4.002
$\Delta\delta/\mathrm{ppm}$	-0.002	0.008	-0.002	-0.005	-0.004	0.004	0.088	-0.041	0.010	0.003	0.035	0.013	0.002	0.005

			Aron	matic			N	H			Methylene	e Bridge		
δ/ppm (0.0 Equiv. TBAI)	7.297	7.175	7.120	7.091	6.865	6.814	7.548	5.058	4.802	4.719	4.270	4.200	3.994	3.955
δ/ppm (5.0 Equiv. TBAI)	7.298	7.179	7.124	7.090	6.867	6.815	7.603	5.037	4.767	4.703	4.280	4.207	3.999	3.961
$\Delta\delta/\mathrm{ppm}$	0.001	0.004	0.004	-0.001	0.002	0.001	0.055	-0.021	-0.035	-0.016	0.010	0.007	0.006	0.006

Table S3 Representative δ and $\Delta\delta$ of **2a** with addition of TBAI (CDCl₃, 400 MHz, 298K, using CDCl₃ 7.26 ppm as reference)

Table S4 Representative δ and $\Delta\delta$ of **2b** with addition of TBAF (CDCl₃, 400 MHz, 298K, using CDCl₃ 7.26 ppm as reference)

		Arc	omatic		N	Ή	Met	hylene Bri	dge
δ/ppm (0.0 Equiv. TBAF)	7.295	7.019	6.994	6.871	7.519	8.146	4.609	4.515	3.964
δ/ppm (5.0 Equiv. TBAF)	7.387	6.996	6.975	6.855	7.983	8.965	4.667	4.544	4.006
$\Delta\delta/ppm$	0.092	-0.023	-0.019	-0.016	0.464	0.819	0.058	0.029	0.042

			Aromatic	2		Ν	Η			Ме	thylene Br	idge		
δ/ppm (0.0 Equiv. TBAC)	7.157	7.111	7.020	6.993	6.905	8.145	7.520	4.605	4.517	4.328	4.111	3.960	3.528	3.474
δ/ppm (5.0 Equiv. TBAC)	7.171	7.112	7.017	7.000	6.914	8.511	7.734	4.647	4.533	4.346	4.129	3.985	3.534	3.471
$\Delta\delta/ppm$	0.014	0.001	-0.003	0.007	0.008	0.366	0.214	0.042	0.015	0.018	0.018	0.025	0.006	-0.003

Table S5 Representative δ and $\Delta\delta$ of **2b** with addition of TBAC (CDCl₃, 400 MHz, 298K, using CDCl₃ 7.26 ppm as reference)

Table S6 Representative δ and $\Delta\delta$ of **2b** with addition of TBAB (CDCl₃, 400 MHz, 298K, using CDCl₃ 7.26 ppm as reference). Note a: peak

covered fail to confirm the δ ; b: $\Delta\delta$ calculated based on two equivalents of TBAB.

		Aromatic		Ν	Н				Me	thylene Bri	dge			
δ/ppm (0.0 Equiv. TBAB)	7.157	6.993	6.905	8.145	7.520	4.605	4.517	4.328	4.232	4.199	4.111	3.960	3.528	3.474
δ/ppm (5.0 Equiv. TBAB)	7.172	7.002	6.914	8.506	7.730	4.644	4.530	4.348	/a	/a	4.128	3.990	3.539	3.472
$\Delta\delta/\mathrm{ppm}$	0.015	0.009	0.009	0.361	0.210	0.039	0.013	0.019	0.011 ^b	0.011 ^b	0.017	0.030	0.011	-0.002

				Arom	atic			N	Н		Met	hylene Bri	dge	
δ/ppm (0.0 Equiv. TBAI)	7.238	7.157	7.122	7.111	6.993	6.905	6.869	8.145	7.517	4.328	4.232	4.199	4.111	3.960
δ/ppm (5.0 Equiv. TBAI)	7.263	7.165	7.125	7.115	7.020	6.908	6.871	8.234	7.588	4.334	4.240	4.206	4.113	3.969
$\Delta\delta/\mathrm{ppm}$	0.025	0.008	0.003	0.004	0.027	0.002	0.002	0.089	0.071	0.006	0.007	0.008	0.002	0.009

Table S7 Representative δ and $\Delta\delta$ of **2b** with addition of TBAI (CDCl₃, 400 MHz, 298K, using CDCl₃ 7.26 ppm as reference).

Table S8 Representative δ and $\Delta\delta$ of **2c** with addition of TBAF (CDCl₃, 400 MHz, 298K, using CDCl₃ 7.26 ppm as reference). Note a: peak

covered fail to confirm the δ ; b: $\Delta\delta$ calcul	ated based on three equivalents of TBA	F: c: $\Delta\delta$ calculated based on two	equivalents of TBAF.
)	

			Aromatic	•		1	NH			Me	thylene Bi	ridge		
δ/ppm (0.0 Equiv. TBAF)	7.329	7.158	7.020	6.996	6.931	7.401	6.769	4.700	4.524	4.332	4.019	3.605	3.510	3.415
δ/ppm (5.0 Equiv. TBAF)	7.316	□/a	7.003	6.985	6.918	7.557	/a	4.687	4.502	4.345	4.050	3.590	3.492	3.392
Δδ/ppm	-0.013	-0.005 ^b	-0.017	-0.010	-0.013	0.156	0.100 ^c	0.013	-0.022	-0.013	0.031	-0.015	-0.018	-0.023

Table S9 Representative δ and $\Delta\delta$ of **2c** with addition of TBAC (CDCl₃, 400 MHz, 298K, using CDCl₃ 7.26 ppm as reference). Note a: peak covered fail to confirm the δ ; b: $\Delta\delta$ calculated based on two equivalents of TBAC; c: $\Delta\delta$ calculated based on one equivalents of TBAC.

		Aromatic		NI	H				Metl	nylene Brid	lge			
δ/ppm (0.0 Equiv. TBAC)	7.143	7.110	6.923	7.398	6.748	4.701	4.501	4.298	4.218	4.095	3.997	3.658	3.588	3.489
δ/ppm (5.0 Equiv. TBAC)	7.140	7.101	6.914	/a	/a	4.693	4.494	/a	4.229	4.117	4.020	3.593	3.494	3.398
$\Delta\delta/ppm$	-0.003	-0.009	-0.010	0.018 ^b	0.074 ^b	-0.008	-0.007	0.011°	0.011	0.022	0.023	-0.065	-0.094	-0.091

Table S10 Representative δ and $\Delta\delta$ of **2c** with addition of TBAB (CDCl₃, 400 MHz, 298K, using CDCl₃ 7.26 ppm as reference). Note a: peak

covered fail to confirm the δ ;	; b: $\Delta\delta$ calculated bas	sed on two equivalents of TBAB.
--	------------------------------------	---------------------------------

			Aromatic		N	Н				Methyler	e Bridge			
δ/ppm (0.0 Equiv. TBAB)	7.327	7.108	6.988	6.923	7.390	6.747	4.890	4.701	4.501	4.105	3.990	3.598	3.481	3.105
δ/ppm (5.0 Equiv. TBAB)	7.318	7.103	6.981	6.911	/a	/a	4.896	4.692	4.496	4.120	4.004	3.595	3.494	3.091
$\Delta\delta/\mathrm{ppm}$	-0.009	-0.005	-0.007	-0.012	0.072 ^{/b}	0.076 ^{/b}	0.006	-0.009	-0.005	0.015	0.014	-0.003	0.013	-0.014

			Aromatic			NF	ł			Meth	ylene Brid	lge		
δ/ppm (0.0 Equiv. TBAB)	7.143	7.108	7.012	6.988	6.923	7.390	6.747	4.890	4.701	4.227	4.103	3.990	3.598	3.481
δ/ppm (5.0 Equiv. TBAB)	7.140	7.106	7.011	6.989	6.922	7.544	6.817	4.891	4.698	4.226	4.109	3.994	3.599	3.480
$\Delta\delta/\mathrm{ppm}$	-0.003	-0.002	-0.001	0.001	-0.001	0.154	0.070	0.001	-0.003	-0.002	0.006	0.004	0.001	-0.001

Table S11 Representative δ and $\Delta\delta$ of **2c** with addition of TBAI (CDCl₃, 400 MHz, 298K, using CDCl₃ 7.26 ppm as reference).

Table S12 NH δ and $\Delta\delta$ of **3** with addition of TBA salts (CDCl₃, 400 MHz, 298K, using CDCl₃ 7.26 ppm as reference).

	TB	AF	TE	BAC	TE	BAB	TI	BAI
δ/ppm (0.0 Equiv. TBA Salts)	8.999	7.639	9.025	7.650	9.025	7.650	9.000	7.640
δ/ppm (5.0 Equiv. TBA Salts)	9.151	7.711	9.283	7.786	9.177	7.780	9.060	7.710
$\Delta\delta/\mathrm{ppm}$	0.152	0.072	0.258	0.137	0.152	0.130	0.060	0.070

	CDCl ₃ .		
Compd.	TBAC	TBAB	TBAI
2b	2.070	0.057	0.067
2c	0.575	0.043	0.388

Table S13 The binding constant K (M⁻¹) of **2b** and **2c** with TBAC, TBAB, TBAI in CDCl₃.

Figure S1. Partial ¹H NMR spectra (CDCl₃, 400 MHz, 298 K) of **2a** after addition of (from bottom to top) 0.0, and 5.0 equivalents of TBAC.

Figure S2. Partial ¹H NMR spectra (CDCl₃, 400 MHz, 298 K) of **2a** after addition of (from bottom to top) 0.0, and 5.0 equivalents of TBAB.

Figure S3. Partial ¹H NMR spectra (CDCl₃, 400 MHz, 298 K) of **2a** after addition of (from bottom to top) 0.0, and 5.0 equivalents of TBAI.

Figure S4. Partial ¹H NMR spectra (CDCl₃, 400 MHz, 298 K) of **2b** after addition of (from bottom to top) 0.0, and 5.0 equivalents of TBAF.

Figure S5. Partial ¹H NMR spectra (CDCl₃, 400 MHz, 298 K) of **2b** after addition of (from bottom to top) 0.0, and 5.0 equivalents of TBAC.

Figure S6. Partial ¹H NMR spectra (CDCl₃, 400 MHz, 298 K) of **2b** after addition of (from bottom to top) 0.0, and 5.0 equivalents of TBAB.

Figure S7. Partial ¹H NMR spectra (CDCl₃, 400 MHz, 298 K) of **2b** after addition of (from bottom to top) 0.0, and 5.0 equivalents of TBAI.

Figure S8. Partial ¹H NMR spectra (CDCl₃, 400 MHz, 298 K) of **2c** after addition of (from bottom to top) 0.0, and 3.0 equivalents of TBAF.

Figure S9. Partial ¹H NMR spectra (CDCl₃, 400 MHz, 298 K) of **2c** after addition of (from bottom to top) 0.0, and 5.0 equivalents of TBAC.

Figure S10. Partial ¹H NMR spectra (CDCl₃, 400 MHz, 298 K) of **2c** after addition of (from bottom to top) 0.0, and 5.0 equivalents of TBAB.

6.5 6.0 f1 (ppm) Figure S12. Partial ¹H NMR spectra (CDCl₃, 400 MHz, 298 K) of **2a** after addition of (from bottom to top) 0.0, and 0.4, 0.6 and 1.0 equivalents of DBU.

5.5

5.0

4.5

4.0

7.0

8.0

7.5

8.5

9.0

3.

3.5

0.4 equiv. DBU

0 equiv. DBU

Figure S13. DFT optimized geometry for (a) dihomooxacalix[4]arene precursor 1 and (b) its complex with F-. The O-H \cdots F hydrogen bonds are indicated by blue dash lines.

Cartesian coordinates, number of imaginary frequencies (NIMG) and absolute total energies (ETOT) of all compounds calculated at the CAM-B3LYP-D3/6-31+G* level are presented in the following.

1. The calixarene-F⁻ complex (monoanion):

NIMG = 0

ETOT = -2224.85790432 a.u.

Coordinates:

F	0.58016400	0.33710200	-1.20297100
0	0.05338600	0.27775000	1.21200900
С	-0.66546900	1.15197600	1.95170200
С	-1.09231100	0.70644200	3.21611100
С	-1.80729200	1.57097500	4.03273600
С	-2.12831300	2.87882200	3.65280300
С	-1.69621600	3.28266600	2.39418800
С	-0.98330100	2.44674000	1.52860600
С	-2.95092800	3.77137900	4.58678700
С	-0.85202800	-0.72701000	3.63853000
0	0.01087500	-2.41274900	1.44581500
С	-1.30154000	-2.44212600	1.81643500
С	-2.18564600	-3.25750300	1.09742800
С	-3.50307900	-3.35239800	1.53197200
С	-3.99860600	-2.62661500	2.61878600
С	-3.10318400	-1.78861400	3.27780500
С	-1.76280800	-1.69074300	2.90192400
С	-5.47198700	-2.76285300	3.01779400
С	-1.74349500	-3.94049300	-0.18393800
0	-0.24998700	-2.07290300	-1.71427900
С	-1.54464900	-2.26066800	-2.08018900
С	-2.11623800	-1.56862400	-3.16237200

С	-3.42490800	-1.84057900	-3.53474000
С	-4.19527400	-2.81500800	-2.89122200
С	-3.59694800	-3.49946400	-1.83789800
С	-2.29638000	-3.22912600	-1.40517200
С	-5.62265000	-3.10147400	-3.37086900
0	-0.04738000	2.33144300	-2.60529600
С	-1.36004700	2.31683700	-2.22884900
С	-1.72104900	2.56382300	-0.89351600
С	-3.06276800	2.48969000	-0.54761200
С	-4.07390900	2.20770200	-1.47362700
С	-3.68440100	1.98466300	-2.78878300
С	-2.34229800	2.02183900	-3.17541500
С	-5.52145200	2.08588900	-0.98908200
С	-1.27488000	-0.59462600	-3.95597200
Н	0.39430300	1.59416400	-2.08463600
Н	0.21224600	0.46190500	0.22126100
H H	0.21224600 0.02267400	0.46190500 -1.12063100	0.22126100 -1.59974700
Н Н С	0.21224600 0.02267400 -5.58488800	0.46190500 -1.12063100 -3.60961400	0.22126100 -1.59974700 -4.82353900
Н Н С С	0.21224600 0.02267400 -5.58488800 -6.32811300	0.46190500 -1.12063100 -3.60961400 -4.15890500	0.22126100 -1.59974700 -4.82353900 -2.51271600
Н Н С С С	0.21224600 0.02267400 -5.58488800 -6.32811300 -6.45949800	0.46190500 -1.12063100 -3.60961400 -4.15890500 -1.81241100	0.22126100 -1.59974700 -4.82353900 -2.51271600 -3.31119100
H H C C C C	0.21224600 0.02267400 -5.58488800 -6.32811300 -6.45949800 -5.84803000	0.46190500 -1.12063100 -3.60961400 -4.15890500 -1.81241100 -1.83824700	0.22126100 -1.59974700 -4.82353900 -2.51271600 -3.31119100 4.18226100
H H C C C C C	0.21224600 0.02267400 -5.58488800 -6.32811300 -6.45949800 -5.84803000 -6.36945400	0.46190500 -1.12063100 -3.60961400 -4.15890500 -1.81241100 -1.83824700 -2.40274200	0.22126100 -1.59974700 -4.82353900 -2.51271600 -3.31119100 4.18226100 1.82007600
H H C C C C C C	0.21224600 0.02267400 -5.58488800 -6.32811300 -6.45949800 -5.84803000 -6.36945400 -5.75724700	0.46190500 -1.12063100 -3.60961400 -4.15890500 -1.81241100 -1.83824700 -2.40274200 -4.21395200	0.22126100 -1.59974700 -4.82353900 -2.51271600 -3.31119100 4.18226100 1.82007600 3.44478800
H H C C C C C C C	0.21224600 0.02267400 -5.58488800 -6.32811300 -6.45949800 -5.84803000 -6.36945400 -5.75724700 -6.50990800	0.46190500 -1.12063100 -3.60961400 -4.15890500 -1.81241100 -1.83824700 -2.40274200 -4.21395200 1.92638600	0.22126100 -1.59974700 -4.82353900 -2.51271600 -3.31119100 4.18226100 1.82007600 3.44478800 -2.15051100
H H C C C C C C C C C	0.21224600 0.02267400 -5.58488800 -6.32811300 -6.45949800 -5.84803000 -6.36945400 -5.75724700 -6.50990800 -5.92885200	0.46190500 -1.12063100 -3.60961400 -4.15890500 -1.81241100 -1.83824700 -2.40274200 -4.21395200 1.92638600 3.33850000	0.22126100 -1.59974700 -4.82353900 -2.51271600 -3.31119100 4.18226100 1.82007600 3.44478800 -2.15051100 -0.19255500
H H C C C C C C C C C C C C C	0.21224600 0.02267400 -5.58488800 -6.32811300 -6.45949800 -5.84803000 -6.36945400 -5.75724700 -6.50990800 -5.92885200 -5.92885200	0.46190500 -1.12063100 -3.60961400 -4.15890500 -1.81241100 -1.83824700 -2.40274200 -4.21395200 1.92638600 3.33850000 0.84927700	0.22126100 -1.59974700 -4.82353900 -2.51271600 -3.31119100 4.18226100 1.82007600 3.44478800 -2.15051100 -0.19255500 -0.07843800
H H C C C C C C C C C C C C C C C C C C	0.21224600 0.02267400 -5.58488800 -6.32811300 -6.45949800 -5.84803000 -6.36945400 -5.75724700 -6.50990800 -5.92885200 -5.63260800 -4.32921900	0.46190500 -1.12063100 -3.60961400 -4.15890500 -1.81241100 -1.83824700 -2.40274200 -4.21395200 1.92638600 3.33850000 0.84927700 3.12656500	0.22126100 -1.59974700 -4.82353900 -2.51271600 -3.31119100 4.18226100 1.82007600 3.44478800 -2.15051100 -0.19255500 -0.07843800 4.82499400
H H C C C C C C C C C C C C C C C C C C	0.21224600 0.02267400 -5.58488800 -6.32811300 -6.45949800 -5.84803000 -6.36945400 -5.75724700 -6.50990800 -5.92885200 -5.63260800 -4.32921900 -3.17784300	0.46190500 -1.12063100 -3.60961400 -4.15890500 -1.81241100 -1.83824700 -2.40274200 -4.21395200 1.92638600 3.33850000 0.84927700 3.12656500 5.17164500	0.22126100 -1.59974700 -4.82353900 -2.51271600 -3.31119100 4.18226100 1.82007600 3.44478800 -2.15051100 -0.19255500 -0.07843800 4.82499400 4.00380600
H H C C C C C C C C C C C C C C C C C C	0.21224600 0.02267400 -5.58488800 -6.32811300 -6.45949800 -5.84803000 -5.84803000 -5.75724700 -6.50990800 -5.92885200 -5.63260800 -4.32921900 -3.17784300 -2.22629200	0.46190500 -1.12063100 -3.60961400 -4.15890500 -1.81241100 -1.83824700 -2.40274200 -4.21395200 1.92638600 3.33850000 0.84927700 3.12656500 5.17164500 3.92895900	0.22126100 -1.59974700 -4.82353900 -2.51271600 -3.31119100 4.18226100 1.82007600 3.44478800 -2.15051100 -0.19255500 -0.07843800 4.82499400 4.00380600 5.93545200

0	-2.06899200	0.22046600	-4.81140000
С	-0.65740700	2.92381900	0.13589200
Н	-2.13384700	1.19397200	4.99937000
Н	-1.92453700	4.27942200	2.03040200
Н	-1.04110700	-0.80901800	4.71478000
Н	0.19266700	-1.00528200	3.47532400
Н	-4.17446500	-3.99540800	0.97022200
Н	-3.43261200	-1.17460700	4.11004100
Н	-2.10523500	-4.97622000	-0.18278500
Н	-0.65491300	-3.95638500	-0.22775700
Н	-3.82850200	-1.27323400	-4.36652200
Н	-4.14702200	-4.27017300	-1.30882100
Н	-3.32601400	2.63684100	0.49408200
Н	-4.41547500	1.72847600	-3.54898100
Н	-0.57312500	-1.15893400	-4.58626500
Н	-0.66733800	0.01921900	-3.29016300
Н	0.26457900	-1.47193800	1.33025200
Н	-6.90975300	-1.96240100	4.42496600
Н	-5.68406000	-0.78534600	3.92942300
Н	-5.27158400	-2.06721600	5.08522800
Н	-6.18371500	-1.37602400	1.49244200
Н	-7.42862300	-2.49348300	2.09264200
Н	-6.18686400	-3.05879700	0.96401900
Н	-5.13635400	-4.49464900	4.30270600
Н	-5.54326600	-4.91789800	2.63464100
Н	-6.81109100	-4.33372300	3.72717000
Н	-5.12387700	-2.87508800	-5.49060800
Н	-6.59976200	-3.81209500	-5.19001200
Н	-5.00201600	-4.53456000	-4.89362300
Н	-7.34578000	-4.32108900	-2.88685000

Н	-6.40384100	-3.84259900	-1.46668100
Н	-5.80573500	-5.12115100	-2.54247000
Н	-6.51171900	-1.43183500	-2.28617200
Н	-7.48284000	-1.99905600	-3.66154400
Н	-6.02855000	-1.02596900	-3.93726200
Н	-4.23694700	2.13499200	5.27865400
Н	-4.86944500	3.00905600	3.87938000
Н	-4.93714400	3.74893200	5.49386800
Н	-2.23106600	5.69132400	3.82120500
Н	-3.76104700	5.77575000	4.70826700
Н	-3.73308100	5.13346700	3.06069200
Н	-2.80994700	4.56286800	6.61491000
Н	-1.24268300	4.38981900	5.79432500
Н	-2.07362000	2.96330300	6.42676800
Н	-6.45828400	2.77648800	-2.84039800
Н	-7.53314400	1.86930300	-1.76129900
Н	-6.32421700	1.01198800	-2.71941500
Н	-5.29889100	3.48395800	0.68972400
Н	-6.96646200	3.24867800	0.15229500
Н	-5.84954800	4.23766600	-0.81389300
Н	-5.32945300	-0.05660400	-0.61272900
Н	-6.66545300	0.71954200	0.26970000
Н	-4.98548600	0.93989500	0.79990300
Н	-0.93776200	1.96106200	-4.79581100
Н	-2.63985200	2.07502200	-5.30588000
Н	0.31000500	2.53769200	-0.18600300
Н	-0.54879400	4.01628000	0.15025200

2. The calixarene molecule:

NIMG = 0

ETOT = -2124.91766189 a.u.

Coordinates:

0	-0.10798200	0.71903300	1.01580500
С	-0.95917100	1.28243300	1.94597400
С	-1.30557700	0.52618300	3.06885700
С	-2.19187100	1.07660400	3.98535900
С	-2.74962700	2.35010100	3.82711700
С	-2.33418400	3.08578600	2.72210600
С	-1.42859300	2.58285600	1.78505600
С	-3.75804200	2.87669300	4.85282200
С	-0.73552900	-0.85959400	3.28660600
0	-0.19066500	-1.92590300	0.60958200
С	-1.20748000	-2.46427700	1.36654800
С	-1.90174300	-3.54735300	0.82148400
С	-2.95773200	-4.09084100	1.54089800
С	-3.35048400	-3.59879000	2.78869200
С	-2.60369300	-2.54723100	3.31254600
С	-1.52718300	-1.97446700	2.63198300
С	-4.54627900	-4.22151100	3.51601000
С	-1.53000200	-4.10636700	-0.53672900
0	-1.22991500	-1.49474400	-1.88840500
С	-2.21753300	-2.36040300	-2.25838400
С	-3.04205500	-1.95522000	-3.31519000
С	-4.07998000	-2.77783400	-3.72840100
С	-4.33030300	-4.01907600	-3.13610900
С	-3.47060100	-4.40275400	-2.11127600
С	-2.41484700	-3.60591600	-1.65963600
С	-5.49734000	-4.88337300	-3.62282900
0	-1.23817300	1.45849500	-1.32923600

С	-2.02376300	2.58024800	-1.46690700
С	-1.91634100	3.58796700	-0.50695400
С	-2.71612100	4.71700000	-0.64632200
С	-3.62366900	4.88512000	-1.69604000
С	-3.67686600	3.86980800	-2.64780200
С	-2.87562500	2.73223400	-2.55984500
С	-4.49528700	6.14330600	-1.75960600
С	-2.78643300	-0.64264200	-3.98700200
Н	-1.64766600	0.69039200	-1.79288400
Н	-0.38945600	1.01462400	0.11645600
Н	-0.78562800	-1.76377400	-1.05304200
С	-5.29673800	-5.23196700	-5.10869500
С	-5.61716900	-6.19457000	-2.83672800
С	-6.81552700	-4.10552000	-3.45648600
С	-4.83713500	-3.53107800	4.85403200
С	-5.80119300	-4.09746200	2.63247100
С	-4.26464200	-5.70888800	3.79410600
С	-5.43140100	6.14109100	-2.97417000
С	-3.59659000	7.38995200	-1.84948600
С	-5.36088700	6.23048300	-0.48921200
С	-4.97330500	1.93227200	4.90078000
С	-4.26136300	4.28262600	4.50376800
С	-3.10244100	2.93326100	6.24425900
С	-2.87426900	1.70169800	-3.64947600
0	-3.04272800	0.41706400	-3.07019200
С	-0.95178000	3.46794600	0.65081500
Н	-2.45771400	0.47684600	4.85176400
Н	-2.70417400	4.09299200	2.56346200
Н	-0.71123300	-1.05095900	4.36380700
Н	0.30639200	-0.89050600	2.95224600

Н	-3.49494800	-4.92378100	1.09496100
Н	-2.84404400	-2.14167000	4.28920400
Н	-1.61490000	-5.19663800	-0.49741400
Н	-0.47876200	-3.89175800	-0.75206200
Н	-4.71026300	-2.42845700	-4.54183700
Н	-3.60260900	-5.36412200	-1.62658600
Н	-2.62270200	5.49286900	0.10875900
Н	-4.34733100	3.94723300	-3.49654200
Н	-3.43886500	-0.53149000	-4.86418300
Н	-1.74165300	-0.57359900	-4.32441300
Н	-0.03822500	-0.98308900	0.86241300
Н	-5.70482200	-4.00042200	5.32965100
Н	-5.06750600	-2.46864300	4.72002100
Н	-3.99442500	-3.61661100	5.54845600
Н	-6.02413000	-3.04698900	2.41827800
Н	-6.66875900	-4.53685900	3.13849900
Н	-5.67683100	-4.61266400	1.67520200
Н	-3.37617100	-5.82587500	4.42376800
Н	-4.09458800	-6.26881400	2.86945600
Н	-5.11472200	-6.16857700	4.31161700
Н	-5.24524900	-4.33404100	-5.73204700
Н	-6.12910600	-5.84479000	-5.47389500
Н	-4.36797900	-5.79379600	-5.25445800
Н	-6.46643400	-6.77381200	-3.21424300
Н	-5.78838600	-6.01378100	-1.77001500
Н	-4.72140400	-6.81585200	-2.94207700
Н	-6.98453800	-3.84615200	-2.40602500
Н	-7.66210900	-4.71067700	-3.80141100
Н	-6.81421800	-3.17544800	-4.03292500
Н	-4.68675200	0.91620800	5.18859300

Η	-5.46146300	1.87644500	3.92212300
Н	-5.70750200	2.29199900	5.63097700
Н	-3.44667800	5.01467000	4.49098400
Н	-4.98727800	4.61045400	5.25534000
Н	-4.76037900	4.30500800	3.52905700
Н	-3.81682400	3.30628900	6.98730900
Н	-2.23387300	3.60034700	6.23913900
Н	-2.76395900	1.94648300	6.57422300
Н	-4.87478000	6.11531600	-3.91714500
Н	-6.03639300	7.05386200	-2.97390200
Н	-6.11941500	5.28908100	-2.95578700
Н	-2.93393500	7.47648800	-0.98304800
Н	-4.20821500	8.29848100	-1.89346600
Н	-2.97042000	7.35514500	-2.74732400
Н	-6.01105700	5.35379300	-0.40009500
Н	-5.99355400	7.12507400	-0.51928900
Н	-4.74901200	6.28584400	0.41628600
Н	-1.91375500	1.72831100	-4.19043500
Н	-3.67442500	1.89836000	-4.37638000
Н	0.02076400	3.11790500	0.29085000
Н	-0.78078000	4.47074600	1.05477200

3. The F- anion:

ETOT = -99.8367667768 a.u.

4. BSSE correction energy (using counterpoise method): 0.004254906506 a.u.

Figure S15 UV/vis absorption of 2c in CH_2Cl_2 (2× 10⁻⁵ M)

Figure S16 Fluorescent emission of **3** in MeCN and in DMF respectively, $(2 \times 10^{-5} \text{ M})$

Figure S17 Fluorescent emission of 2b in CH_2Cl_2 (2× 10⁻⁵ M)

Figure S20. ¹³C NMR spectrum of 2a (CDCl₃, 400 MHz, 298K)

Figure S23. ¹³C NMR spectrum of 2b (CDCl₃, 400 MHz, 298K)

Figure S24. HRMS spectrum of 2b.

Figure S25. ¹H NMR spectrum of 2c (CDCl₃, 400 MHz, 298K)

Figure S26. ¹³C NMR spectrum of 2c (CDCl₃, 400 MHz, 298K)

Figure S29. ¹³C NMR spectrum of 1b (CDCl₃, 400 MHz, 298K)

Figure S30. HRMS spectrum of 1b.

Figure S31. ¹H NMR spectrum of 3 (CDCl₃, 400 MHz, 298K)

Figure S32. ¹³C NMR spectrum of 3 (CDCl₃, 400 MHz, 298K)

