Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

† Electronic supplementary information (ESI)

Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for

bioimaging and photodynamic therapy of tumor

Jing Zhao,^a Futian Li,^b Shen Zhang,^a Ying An*^a and Shuqing Sun*^a

^a Department of Chemistry, College of Science, Tianjin University, Tianjin, 300350, China.
^b Chinese Academy of Medical Sciences, Institute of Radiation Medicine, Tianjin, 300192, China

Corresponding Author: <u>sunshuqing@tju.edu.cn</u>, <u>anying@tju.edu.cn</u>

Fig. S1 The Zeta potential of Y-CDs (a) and R-CDs (b).

Table S1 XPS data analysis of the C 1s spectra of Y-CDs (top) and R-CDs (bottom).

	Туре	Content (%)
Y-CDs	C=C/C-C	59.9
	СN/ СО	34.8
	C=O	5.3

	Туре	Content (%)
R-CDs	C=C/C-C	69.2
	С-N/С-О/С-Р	27.6
	C=O	3.2

Fig. S2 Fluorescence intensity of Y-CDs (a) and R-CDs (b) dispersed in different concentrations of NaCl ($0 \sim 0.4$ mol L⁻¹); Fluorescence intensity of Y-CDs (c) and R-CDs (d) at different irradiation times under UV lamp.

Fig. S3 Time-dependent fluorescence intensity ($\lambda_{ex}/\lambda_{em} = 504/525 \text{ nm}$) irradiated with white light (100 mW cm⁻²).

Fig. S4 Biodistribution of the R-CDs NRs in tumor-bearing mice. Data are expressed as means \pm s.d. (n = 3)).

Biodistribution study of the R-CDs was carried out on the mice bearing tumors by intravenous injection of the R-CDs and then extracted the R-CDs from organs and blood. The distribution and the concentration of the R-CDs in the blood, tumor and organs including liver, spleen, lung, kidney and bladder were quantified by ultraviolet–visible spectroscopy after extraction by water. The R-CDs exhibited low uptake by the organs as evidenced by the low % IDg⁻¹ (percent injected dose per gram tissue), which prove the biosafety of the R-CDs.