Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

A dual-response sensor based on NBD for the highly selective determination of sulfide in living cells and zebrafish

Ji Hye Kang,^a Minuk Yang,^a Dongju Yun,^a Jiyeon Han,^b Hyojin Lee,^c Mi Hee Lim,^b Ki-Tae Kim,^c* Cheal Kim^a*

^aDepartment of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: <u>chealkim@seoultech.ac.kr</u>

^bDepartment of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea

^cDepartment of Environmental Engineering, Seoul National University of Science and Technology, Seoul 139-743, Korea. Tel: +82-2-970-6642; E-mail: <u>ktkim@seoultech.ac.kr</u>

Fig. S1 ¹H NMR spectrum of 1-NO₂.

Fig. S2 13 C NMR spectrum of 1-NO₂.

Fig. S3 Negative-ion mass spectrum of 1-NO₂ (0.1 mM).

Fig. S4 Reaction time (at 540 nm) of 1-NO₂ (20 μ M) with S²⁻ (8 equiv).

Fig. S5 Job plot for interaction ratio of 1-NO₂ with S²⁻. The total concentration of 1-NO₂ with S²⁻ was 50 μ M.

Fig. S6 The association value of -NO₂ toward S²⁻ by using the non-linear fitting equation based on UV-vis titration at 558 nm.

Fig. S7 Determination of the detection limit of 1-NO₂ (20 μ M) for S²⁻ based on change of absorbance at 558 nm.

Fig. S8 (a) Fluorescence intensities (at 540 nm) and (b) absorbance (at 558 nm) of $1-NO_2$ (20 μ M) and the reduced form $1-NH_2$, respectively, at pH range of 2-12.

(a)

Fig. S9 Quantification of mean fluorescence intensity in Fig. 6 (a4, b4, c4, d4).

Fig. S10 (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1- NO_2 . (b) The major electronic transition energy and molecular orbital contributions for $1-NO_2$ (H = HOMO and L = LUMO).

34

ICT

0.1427

 $H-1 \rightarrow L$

Fig. S11 (a) The theoretical excitation energies and the experimental UV-vis spectrum of the reduced form 1-NH₂. (b) The major electronic transition energies and molecular orbital contributions of the reduced form $1-NH_2$ (H = HOMO and L = LUMO).

0.0963

(a)

Fig. S12 Molecular orbital diagrams of 1-NO₂ and the reduced form 1-NH₂ using TD-DFT.