Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supporting Information #2

Design and functionalization of bioactive benzoxazines. An unexpected *ortho*-substitution effect

Agata Arendt-Pindel,^a Aleksandra Marszałek-Harych,^a Elżbieta Gębarowska,^b Tomasz Gębarowski,^c Dawid Jędrzkiewicz,^a Elżbieta Pląskowska,^b Dariusz Zalewski,^d Nurbey Gulia,^a Sławomir Szafert^a and Jolanta Ejfler^{a,*}

^aFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland ^bDepartment of Plant Protection, University of Environmental and Life Science, 24A pl. Grunwaldzki, 53-363 Wrocław, Poland

^cDepartment of Basic Medical Science, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland

^dDepartment of Genetics, Plant Breeding and Seed Production, University of Environmental and Life Science, pl. Grunwaldzki 24A, 53-363 Wrocław, Poland

This ESI contains ¹H and ¹³C NMR spectra displayed in full range

* Corresponding Author: Jolanta Ejfler, e-mail: jolanta.ejfler@chem.uni.wroc.pl

Figure S3.¹HNMR of 2 in CDCl₃.

Figure S6. ¹³C NMR of 3 in CDCl₃.

Figure S8. ¹³C NMR of 5 in CDCl₃.

Figure S9. 1 HNMR of 6 in CDCl₃.

Figure S12. ¹³C NMR of 7 in CDCl₃.

Figure S13. ¹H NMR of 8 in CDCl₃.

Figure S14. ¹³C NMR of 8 in CDCl₃.

Figure S15. 1 HNMR of **9** in CDCl₃.

Figure S16. ¹³C NMR of 9 in CDCl₃.

Figure S18. ¹³C NMR of 10 in CDCl₃.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Figure S21. ¹ $HNMR of 13 in CDCI_3$.

Figure S22. ¹³C NMR of 13 in CDCl₃.

Figure S24. ¹³C NMR of 14 in CDCl₃.

Figure S25. ¹H NMR of 15 in CDCl₃.

Figure S27.¹HNMR of **17** in CDCl₃.

Figure S30. ¹³C NMR of 18 in CDCl₃.

Figure S33.¹HNMR of 20 in CDCl₃.

Figure S34. 13 C NMR of 20 in CDCl₃.

Figure S36. ¹³C NMR of 21 in CDCl₃.