Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Napthalimide End-Capped Diphenylacetylene: A Versatile Organic

Semiconductor for Blue Light Emitting Diodes and Donor or Acceptor for

Solar Cells

Thu-Trang Do,^a Jegadesan Subbiah,^b Sudam Chavan,^c Tsu-Hao Ou,^c Sergei Manzhos,^d David Jones, ^b John M. Bell,^a JwoHuei Jou^c and Prashant Sonar^a*

^aSchool of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD-4001, Australia.

^bSchool of Chemistry, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia

^cDepartment of Materials Science and Engineering, National Tsing-Hua University, 101 Sec-2 Kuang -Fu Road, Hsinchu -30013 Taiwan

^dDepartment of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117576.

*E-mail: <u>sonar.prashant@qut.edu.au</u>.

KEYWORDS: Napthalimide, Electron Acceptors, Electron Donor, Wide Band-gap Molecules, Organic Solar Cells.

Contents

- 1. Figure S1. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 1
- 2. Figure S2. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2
- 3. Figure S3. ¹H NMR (400 MHz, CDCl₃) spectrum of **3**
- 4. Figure S4. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5
- 5. Fig ure S5. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 6
- 6. Figure S6. (a) ¹H NMR (600 MHz, CDCl₃) spectrum and (b) ¹³C NMR (150 MHz, CDCl₃) spectrum of **NAI-PVP-NAI**
- 7. Figure S7. HRMS spectrum of NAI-PVP-NAI
- 8. Figure S8. Emission spectra of NAI-PVP-NAI in various solvents
- Figure S9. X-ray diffraction spectra of NAI-PVP-NAI neat film and CBP doped with 3-wt
 % NAI-PVP-NAI film
- 10. Figure S10. Current density -voltage curve of electron only device made up using NAI-PVP-NAI.

Figure S1. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 1

Figure S2. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2

Figure S4. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5

Figure S5. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 6

Figure S6. (a) ¹H NMR (600 MHz, CDCl₃) spectrum and (b) ¹³C NMR (150 MHz, CDCl₃) spectrum of **NAI-PVP-NAI**

Figure S7. HRMS spectrum of NAI-PVP-NAI

Figure S8. Emission spectra of NAI-PVP-NAI in various solvents

Figure S9: X-ray diffraction spectra of NAI-PVP-NAI neat film and CBP doped with 3-wt % **NAI-PVP-NAI** film.

Figure S10. Current density -voltage curve of electron only device made up using NAI-PVP-NAI.