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1. Tables

Table S1. Area value (kceV/sec) for deconvoluted peaks of CNMS samples.

Elements CNMS-1  CNMS-2 CNMS-3 CNMS-4 CNMS-5
Mo®* 3ds, (MoOs)  262.1 210.8 285.4 4215 405.6

Mo®* 3ds, (MoO;)  558.2 424.0 522.9 701.8 840.1
Mo**3ds (Mo0O,)  76.7 73.9 95.6 113.0 157.5

Mo* 3ds, (MoS,)  69.4 (6.8%) 89.9 (10.6%)  124.5(11.3%) 176.2 (11.7%) 228.6 (13.0%)
S 25 44.1 (43%) 52.9(62%)  7TL.1(6.5%)  98.0(6.5%)  129.3 (7.3%)
S 2pi» 33.4 53.6 56.1 60.3 71.2

S 2p3» 44.7 55.6 63.4 92.7 107.5

Table S2. Structural parameters of the samples.

Samples Sger (m?-g!)  Pore size (nm)  Vpore (cm?-g7!)
g-C3Ny 5.89 3.94 0.15
CNMO 32.35 3.94 0.39
CNMS-1 35.94 3.94 0.35
CNMS-2 36.57 3.85 0.48
CNMS-3 37.29 3.92 0.47
CNMS-4 39.97 3.50 0.40
CNMS-5 42.52 3.24 0.43




2. Figures

Fig. S1. TEM image of the pure g-C;N,.
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Fig. S2. TEM images of CNMS-3 (a) and CNMS-4 (b) (the insets shows the region enclosed by

the white square of images in (a) and (b), respectively).
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Fig. S3. (a-b) Intensity profiles along the green lines indicated in Fig. 1c and d, respectively.
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Fig. S4. N, adsorption—desorption isotherms (a) and pore size distribution curves (b) of g-C;Ny,

CNMO and CNMS-2 samples.
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Fig. S5. The thickness of MoS, layers in CNMS-1 (a), CNMS-2 (b), CNMS-3 (c), CNMS-4 (d)

and CNMS-5 (e).
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Fig. S6. H; production rates of the samples under visible-light irradiation (A> 420 nm) normalized

to the corresponding BET surface areas.
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Fig. S7. The PL spectral intensities (excitation at 315 nm) observed for MoO;, g-CsN4, CNMO,

CNMS-1 and CNMS-2 under visible light irradiation (>420 nm) for 15 min in a 5 x 10~* M basic

solution of terephthalic acid with h* scavenger: EDTA-Na, (a) and with O, scavenger: p-

benzoquinone (b), band positions of MoO;, g-C3N,4 and 2H-MoS, together with O,/*O,7,

H*/H,,-OH/H,0 and -OH/OH- redox potentials (c).
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Fig. S8. Pathways of *OH produced from MoQO3/2H-MoS,/g-C3Nj,.

Compared with CNMO, CNMS-1 exhibits a weaker PL peak intensity in the presence of
EDTA-Na, as h* scavenger. This suggests that the *OH radicals are originated from the
photoexcited electrons in the CB of the 2H-phase MoS,, which can be explained by the fact that
the electrons on the CB of the 2H-phase MoS, possess lower reduction ability than those on the
CB of g-C3Ny, and therefore, the PL emission peak intensity of CNMS-1 should be weaker than
that of CNMO. Meanwhile, when p-benzoquinone was added as the *O,~ scavenger, a stronger PL
peak intensity was observed in CNMS-1 compared with CNMO, suggesting that the holes
generated *OH radicals must be in the VB of MoOs;. Thus, it can be concluded that the
photogenerated charge carriers transferred via the traditional heterojunction mechanism between
g-C3N, and the 2H-phase MoS; and migrated through the direct Z-scheme mechanism between the

2H-phase MoS; and MoOj; (Fig. S8).
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3. Solar-to-hydrogen conversion efficiency (STH) calculations

The solar-to-hydrogen energy conversion efficiency (STH) was evaluated by using a 300 W
Xenon arc lamp (PLS-SXE300) with a 420 nm cutoff filter as light source (25.8 mW/cm?) and
CNMS-2 sample as the catalyst (10 mg catalyst in 20 mL deionized water). The light intensity was
obtained with an optical power meter (CEL-NP2000, CEAULIGHT, Beijing). After 4 h of

illumination, the total incident power over the 28.3 cm? irradiation area (3 cm radius) was:

Psolar= 25.8X28.3X103=0.73 W
The total input energy in 4 hours was:
Esolar = 0.73 X4 X 3600 = 1.051 X 10*J

During the photocatalytic reaction, 20.52 umol H, was detected by gas chromatography (GC),

which indicated that the energy generated by water splitting was:

Enydrogen = 20.52X10¢X6.02X10%X2.46 X 1.609X 101 = 4.89 J; 2.46 ¢V is the free energy

of water splitting.

The STH was determined to be:

STH = Enydrogen/Esotar = 4.89/(1.051 X 10%) = 0.047%
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