Supporting Information

Stable 1T-phase MoS₂ as an effective electron mediator promoting photocatalytic hydrogen production

Jian-Wen Shi,*,a,c Yajun Zou, a Dandan Ma, a Zhaoyang Fan, a Linhao Cheng, a Diankun Sun, a Zeyan

Wang,^c Chunming Niu,^a Lianzhou Wang*,^b

^a Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation

and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049,

China

^b Nanomaterials Centre, School of Chemical Engineering and AIBN, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia

^c State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China

Corresponding author:

Jian-Wen Shi, E-mail: jianwen.shi@mail.xjtu.edu.cn

Lianzhou Wang, E-mail: l.wang@uq.edu.au

1. Tables

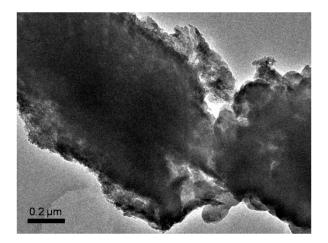
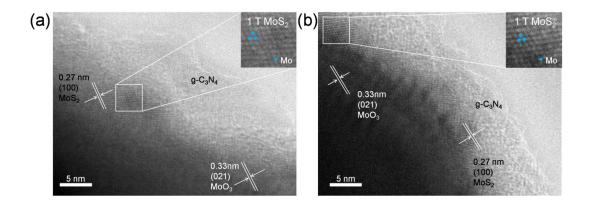

Elements	CNMS-1	CNMS-2	CNMS-3	CNMS-4	CNMS-5
Mo ⁶⁺ 3d _{3/2} (MoO ₃)	262.1	210.8	285.4	421.5	405.6
Mo ⁶⁺ 3d _{5/2} (MoO ₃)	558.2	424.0	522.9	701.8	840.1
Mo ⁴⁺ 3d _{5/2} (MoO ₂)	76.7	73.9	95.6	113.0	157.5
$Mo^{4+} 3d_{5/2} (MoS_2)$	69.4 (6.8%)	89.9 (10.6%)	124.5 (11.3%)	176.2 (11.7%)	228.6 (13.0%)
S ²⁻ 2s	44.1 (4.3%)	52.9 (6.2%)	71.1 (6.5%)	98.0 (6.5%)	129.3 (7.3%)
S 2p _{1/2}	33.4	53.6	56.1	60.3	71.2
S 2p _{3/2}	44.7	55.6	63.4	92.7	107.5

Table S1. Area value (kceV/sec) for deconvoluted peaks of CNMS samples.


 Table S2. Structural parameters of the samples.

Samples	$S_{BET} \left(m^2 \cdot g^{-1} \right)$	Pore size (nm)	$V_{pore} \left(cm^3 \cdot g^{-1} ight)$
g-C ₃ N ₄	5.89	3.94	0.15
CNMO	32.35	3.94	0.39
CNMS-1	35.94	3.94	0.35
CNMS-2	36.57	3.85	0.48
CNMS-3	37.29	3.92	0.47
CNMS-4	39.97	3.50	0.40
CNMS-5	42.52	3.24	0.43

2. Figures

Fig. S1. TEM image of the pure $g-C_3N_4$.

Fig. S2. TEM images of CNMS-3 (a) and CNMS-4 (b) (the insets shows the region enclosed by the white square of images in (a) and (b), respectively).

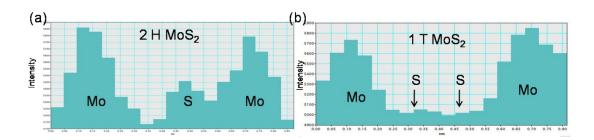


Fig. S3. (a-b) Intensity profiles along the green lines indicated in Fig. 1c and d, respectively.

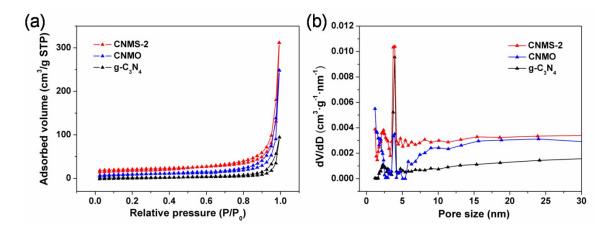


Fig. S4. N_2 adsorption-desorption isotherms (a) and pore size distribution curves (b) of g-C₃N₄, CNMO and CNMS-2 samples.

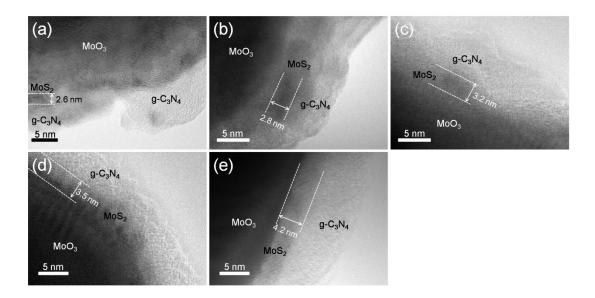


Fig. S5. The thickness of MoS_2 layers in CNMS-1 (a), CNMS-2 (b), CNMS-3 (c), CNMS-4 (d) and CNMS-5 (e).

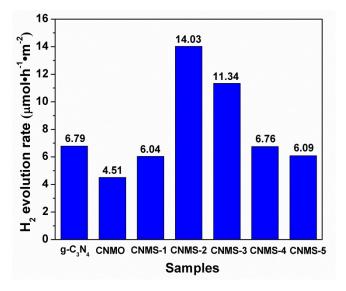
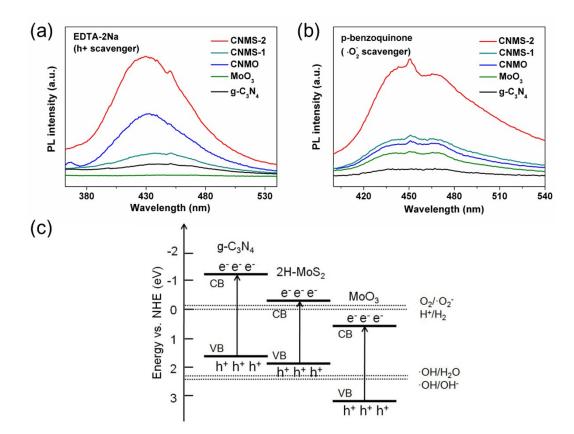



Fig. S6. H₂ production rates of the samples under visible-light irradiation (λ > 420 nm) normalized to the corresponding BET surface areas.

Fig. S7. The PL spectral intensities (excitation at 315 nm) observed for MoO₃, g-C₃N₄, CNMO, CNMS-1 and CNMS-2 under visible light irradiation (>420 nm) for 15 min in a 5×10^{-4} M basic solution of terephthalic acid with h⁺ scavenger: EDTA-Na₂ (a) and with \bullet O₂⁻ scavenger: p-benzoquinone (b), band positions of MoO₃, g-C₃N₄, and 2H-MoS₂ together with O₂/ \bullet O₂⁻, H⁺/H₂, OH/H₂O and \cdot OH/OH⁻ redox potentials (c).

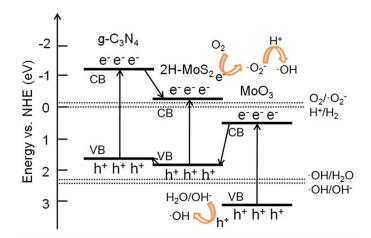


Fig. S8. Pathways of •OH produced from MoO₃/2H-MoS₂/g-C₃N₄.

Compared with CNMO, CNMS-1 exhibits a weaker PL peak intensity in the presence of EDTA-Na₂ as h⁺ scavenger. This suggests that the •OH radicals are originated from the photoexcited electrons in the CB of the 2H-phase MoS₂, which can be explained by the fact that the electrons on the CB of the 2H-phase MoS₂ possess lower reduction ability than those on the CB of $g-C_3N_4$, and therefore, the PL emission peak intensity of CNMS-1 should be weaker than that of CNMO. Meanwhile, when p-benzoquinone was added as the •O₂⁻ scavenger, a stronger PL peak intensity was observed in CNMS-1 compared with CNMO, suggesting that the holes generated •OH radicals must be in the VB of MoO₃. Thus, it can be concluded that the photogenerated charge carriers transferred via the traditional heterojunction mechanism between the 2H-phase MoS₂ and MoO₃ (**Fig. S8**).

3. Solar-to-hydrogen conversion efficiency (STH) calculations

The solar-to-hydrogen energy conversion efficiency (STH) was evaluated by using a 300 W Xenon arc lamp (PLS-SXE300) with a 420 nm cutoff filter as light source (25.8 mW/cm²) and CNMS-2 sample as the catalyst (10 mg catalyst in 20 mL deionized water). The light intensity was obtained with an optical power meter (CEL-NP2000, CEAULIGHT, Beijing). After 4 h of illumination, the total incident power over the 28.3 cm² irradiation area (3 cm radius) was:

 $P_{Solar} = 25.8 \times 28.3 \times 10^{-3} = 0.73 \text{ W}$

The total input energy in 4 hours was:

 $E_{Solar} = 0.73 \times 4 \times 3600 = 1.051 \times 10^4 \text{ J}$

During the photocatalytic reaction, 20.52 μ mol H₂ was detected by gas chromatography (GC), which indicated that the energy generated by water splitting was:

 $E_{Hydrogen} = 20.52 \times 10^{-6} \times 6.02 \times 10^{23} \times 2.46 \times 1.609 \times 10^{-19} = 4.89$ J; 2.46 eV is the free energy of water splitting.

The STH was determined to be:

STH = $E_{Hydrogen}/E_{Solar} = 4.89/(1.051 \times 10^4) = 0.047\%$