Supplementary Materials

A C₂₀ fullerene-based sheet with ultrahigh thermal conductivity

Yupeng Shen,^a Fancy Qian Wang,^a Jie Liu,^a Yaguang Guo,^a Xiaoyin Li,^a Guangzhao

Qin,^b Ming Hu,^b and Qian Wang*a

^a Center for Applied Physics and Technology, Department of Materials Science and Engineering, HEDPS, BKL-MEMD, College of Engineering, Peking University, Beijing 100871, China.

^b Institute of Mineral Engineering, Division of Materials Science and Engineering, RWTH Aachen University, 52064 Aachen, Germany.

E-mail: qianwang2@pku.edu.cn

1. Isotopic scattering rates and three-phonon scattering

Fig. S1 Variation of (a) the isotopic scattering rates, and (b) the three-phonon scattering rates of the acoustic branches with frequency at 300 K for Hexa- C_{20}

2. Elastic constants of Hexa-C₂₀

i able SI. Cal	culated elastic	constants (units of r	vm ⁻¹) of	Hexa- C_{20}

C ₁₁	522.5
C ₁₂	36.9
C ₁₃	4.6
C ₂₂	522.5
C ₃₃	15.4
C ₄₄	242.5

3. Possible way to synthesize Hexa- C_{20}

A possible way to synthesize Hexa- C_{20} is using laser ablation of polycrystalline diamond or graphite on some proper substrates. The possibility has been demonstrated by the synthesis of a C_{20} -based solid,¹ where the solid phase of dodecahedral C_{20} can be

acquired on the nickel substrates in the presence of 10^{-4} torr of cyclohexane or benzene with the pulsed laser ablation at a wavelength of 248 nm on the polycrystalline diamond.

4. Structural information of the optimized Hexa-C₂₀

Lattice parameters: a = b = 6.9639Å, c = 15.4007Å.

Space group: P6/mmm (191)

Atomic Wyckoff positions:

Table S2. Atomic Wy	ckoff po	ositions of	of Hexa-C	20
---------------------	----------	-------------	-----------	----

Wyckoff positions	х	У	Z
120	-0.21117	0.57766	0.41847
6m	-0.12987	0.74026	0.50000
4h	0.33333	0.66667	0.45055
12n	0.40210	0.00000	0.38233

References

1 Z. Iqbal, Y. Zhang, H. Grebel, S. Vijayalakshmi, A. Lahamer, G. Benedek, M. Bernasconi, J. Cariboni, I. Spagnolatti and R. Sharma, *Eur. Phys. J. B.*, 2003, **31**, 509-515.