Supporting Information

Mesoporous-Silica Induced Doped Carbon Nanotubes Growth From Metal-

Organic Frameworks

Huang Zhou^a, Daping He^{ab*}, Ibrahim Saana Amiinu^a, Jinlong Yang^a, Zhe Wang^a, Jian Zhang^a, Qirui Liang^a, Shuai Yuan^a, Jiawei Zhu^a, Shichun Mu^{a*}

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
E-mail: msc@whut.edu.cn, hedaping@whut.edu.cn
^bHubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China

*Address correspondence to: msc@whut.edu.cn,hedaping@whut.edu.cn

Figure S1 FESEM images of as-prepared

ZIF-67 precursors.

Figure S2 TEM images (a, b) and particle-size distribution (c) of ZIF-67 precursors.

Figure S3 (a) TEM images,(b)HR-TEM image (c) N₂ adsorption-desorption

isotherms, and (d) pore-size distribution curves of as-prepared ZIF-67@mSiO₂.

Figure S4 (a) N_2 adsorption-desorption isotherms, and (b) pore-size distribution

curves of ZIF-67.

Figure S5 FESEM (a) and TEM (b) image of as-prepared

of Co/N-CNTs.

Figure S6 TEM image of (a) Co/N-CNTs (with Co nanoparticles partially removed by HF), HRTEM (b) and HAADF (c) image of a single CNT with Co removed and

(d-f) the corresponding EDS mapping images.

Figure S7 (a) X-Ray photoelectron spectroscopy (XPS) spectra of Co/N-CNTs obtained at different temperatures;(b) The total N content obtained from XPS;N1s XPS spectra of Co/N-CNTs obtained at different temperatures: (c) 600° C; (d) 800° C and (e) 900° C; (f) The percentage of pyridinic N of Co/N-CNTs obtained at different temperatures.

Figure S8 Co 2p XPS spectrum of Co/N-CNTs obtained at 700°C.

Figure S9 (a) Raman spectra of Co/N-CNTs synthesized at different pyrolysis temperatures (600-900 °C) and (b) the corresponding I_D/I_G value.

Figure S10 Raman spectra of Co NP/N-C synthesized at 700°C.

Figure S11 N_2 adsorption-desorption isotherms. The inset image shows the pore-size distribution calculated using the Barrett–Joyer–Halenda (BJH) method.

Figure S12 Stability of (a) Co/N-CNTs and (b) Pt/C symbolized by $\Delta E_{1/2}$ before and

after the i-t test.

Figure S13 The i-t chronoamperometric responses for Co/N-CNTs and Pt/C in CO and O₂-saturated solution ($V_{CO}/V_{O2}=10\%$) during a constant potential at -0.35 V at a rotation rate of 1,600 rpm in 0.1 M KOH

Figure S14 Formation mechanic (a), Low-magnification (b) and (c) highmagnification FESEM images of Co NP/N-C synthesized at 700° C without mSiO₂ protection.

Figure S15 TEM images (a,b) of ZIF-67@mSiO₂ after pyrolysis at different temperatures in argon for 0.5 h (mSiO₂ shell was removed by 1 M NaOH before characterization). And TEM image of ZIF-67 without mSiO₂ protection after pyrolysis at 580°Cin argon for 0.5h.

Figure S16 FESEM images of Co/N-CNTs synthesized at different pyrolysis

temperatures (600-900℃).

Figure S17 FESEM images of Co/N-CNTs-x (x indicates relative mass of mSiO₂) obtained by pyrolyzed different mass of mSiO₂ coated ZIF-67 at 700°C after HF etching.

Catalyst	Eonset (V vs Ag/AgCl)	E _{1/2} (V vs Ag/AgCl)	J (mA cm ⁻ ²)	Ref.
Co/N-CNTs	-0.005	-0.154	~5.82	This work
Co,N-CNF	-0.082	-0.155	~5.71	<i>Adv. Mater.</i> 2015 , 28(8):1712- 1712.
P-Z8-Te- 1000	-0.161	-0.161	~5.70	J. Am. Chem. Soc 2014, 136, 14385- 14388.
Co@N- PGCS	-0.075	-0.151	~5.60	<i>Nanoscale</i> 2016 , 8, 13311-13320.
N-CNT aerogels	-0.055	-0.263	~4.80	small 2015, 11, 3903–3908
EDA-NCNT	/	-0.150	~4.91	J. Phys. Chem. C 2009, 113, 21008– 21013
Py-NCNT	/	-0.330	~1.57	J. Phys. Chem. C 2009, 113, 21008– 21013
Co3O4/rmG O	/	0.83 (V vs RHE)	/	<i>Nat. Mater.</i> 2011, 10, 780-786.
NCNTFs	/	0.87 (V vs RHE)	~5.40	<i>Nat. Energy</i> 2016 , <i>1</i> , 15006
N-CNTs-550	/	0.86 (V vs RHE)	~5.20	J. Am. Chem. Soc. 2017, 139, 8212- 8221.
N-CNTs-435	/	0.81 (V vs RHE)	~5.20	J. Am. Chem. Soc. 2017, 139, 8212- 8221.

Table S1 Comparison of ORR performance of all catalysts in this work with correlative literature values.