FePt/Co core/shell nanoparticle based anisotropic

nanocomposites and their exchange spring behavior

Deyao Li,^a Hui Wang,^a Zhenhui Ma,^{a,b} Xin Liu,^a Ying Dong,^a Liu, Zhiqi^a, Tianli Zhang,^{*a} and Chengbao Jiang^{*a}

^a School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China

^bSchool of Materials Science and Engineering, Shaanxi University of Science & Technology, X'an 710021, P.R. China

Fig. S1 a) TEM and b) HRTEM of fcc-FePt-Fe₃O₄ nanoparticles (NPs). The NPs show a dumbbell-like shape with 7.8 nm dark FePt and 5 nm grey Fe₃O₄. The interplanar spacing of 0.22 nm and 0.48 nm are consistent with (111) lattice planes of fcc-FePt and (111) lattice planes of fcc-Fe₃O₄, respectively. c) TEM image of fcc-FePt-F₃O₄/MgO nanocomposite. d) TEM image of fct-FePt/MgO nano composite. The fcc-FePt-Fe₃O₄NPs were imbedded in MgO matrix which prohibited the aggregation during the annealing process.

Fig. S2 a), b), c) and d) Diameter distribution of 11.7 nm-FePt NPs, FePt/1.9 nm-Co NPs, FePt/2.8 nm-Co NPs and FePt/8.7 nm-Co NPs, respectively.

Fig. S3 Enlarged HRTEM image of FePt/8.7 nm-CoNPs in which more clear lattice fringes could be observed.

Fig. S4 *Para*- (red curve) and *perp*- (blue curve) hysteresis loops of 11.7 nm-FePt, FePt/1.9 nm-Co and FePt/8.7 nm-Co anisotropic nanocomposites, respectively.

Fig. S5 Similar *para*- (red curve) and *perp*- (blue curve) hysteresis loops of FePt/2.8 nm-Co anisotropic nanocomposites with high nanoparticle concentration.