Supporting Information

Label-Free Detection of β-Amyloid Peptides (Aβ40 and Aβ42): A Colorimetric Sensor Array for Plasma Monitoring of Alzheimer's Disease

Forough Ghasemi,^a M. Reza Hormozi-Nezhad^{a, b} * and Morteza Mahmoudi^c *

^aDepartment of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran

^bInstitute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran

^cDepartment of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States

*Corresponding authors: (M.R.H.N.) email: <u>hormozi@sharif.edu</u>; (M.M.) email: <u>mmahmoudi@bwh.harvard.edu</u>

Table of Contents

Figure/Table	Page
Fig. S1. UV–Vis spectrum, intensity size distribution, and TEM image of AuNPs respectively), and AgNPs (d, e, and f, respectively).	(a, b, and c, 3S
Fig. S2. Absorbance spectra of AuNPs (0.27 nmol L ⁻¹) in the presence of 300 A β 40 and A β 42 at pH 5.0, 20 min.	nmol L ⁻¹ of 4S
Fig. S3. Effect of time on the aggregation process of A β 40 (300 nmol L ⁻¹) in the 130 µmol L ⁻¹ of Cu(II), 0.27 nmol L ⁻¹ of (a) AuNPs or (b) AgNPs and pH 5.0.	presence of 5S
Fig. S4. Absorbance spectra of AuNPs (0.27 nmol L ⁻¹) in the presence of 12 Cu(II), pH 5.0, 20 min, and A β 40, A β 42, HSA at different concentration of (a) 50 100, (d) 150, (e) 200, (f) 300, (g) 400, and (h) 500 nmol L ⁻¹ .	30 μmol L ⁻¹ 0, (b) 75, (c) 6S
Fig. S5. Absorbance spectra of AgNPs (0.27 nmol L ⁻¹) in the presence of 12 Cu(II), pH 5.0, 20 min, and A β 40, A β 42, HSA at different concentration of (a) 50 100, (d) 150, (e) 200, (f) 300, (g) 400, and (h) 500 nmol L ⁻¹ .	30 μmol L ⁻¹ 0, (b) 75, (c) 7S
Fig. S6. Intensity size distribution of the AuNPs (a), AuNPs (0.27 nmol L ⁻¹) in f of 130 µmol L ⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L ⁻¹ of A β 40 (b), AuNPs (0 ¹) in the presence of 130 µmol L ⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L ⁻¹ of A AuNPs (0.27 nmol L ⁻¹) in the presence of 130 µmol L ⁻¹ Cu(II), pH 5.0 at 20 m	the presence 0.27 nmol L ⁻ $\lambda\beta42$ (c) and nin and 300

8S

nmol L⁻¹ of HAS (d).

Fig. S7. Intensity size distribution of the AgNPs (a), AgNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 40 (b), AgNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and AgNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and AgNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and AgNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and AgNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and β S

Fig. S8. Absorbance response patterns of sensor elements against A β 40, A β 42 and HSA at concentrations (a) 50, (b) 75, (c) 100, (d) 150, (e) 200, (f) 300, (g) 400, and (h) 500 nmol L⁻¹ at 3 wavelengths of 420, 530, 620 nm. 10S

Fig. S9. Heat map of the absorbance response patterns for sensor elements against A β 40, A β 42 and HSA at concentrations (a) 50, (b) 75, (c) 100, (d) 150, (e) 200, (f) 300, (g) 400, and (h) 500 nmol L⁻¹ at 3 wavelengths of 420, 530, 620 nm. In the rainbow color scale, a dark red is for the highest positive value and a dark purple is for the highest negative value.

11S

Table S1. Leave-one-out analysis by Jackknifing in linear discriminant analysis. Each group
contains 8 concentrations of analyte (A β 40, A β 42, and HSA) with 6 replicates.12S

Fig. S10. Absorbance spectra of (a) AuNPs and (b) AgNPs (0.27 nmol L⁻¹ in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 before and after exposure to total 500 nmol L⁻¹ of A β 40, A β 42 and their mixtures at 20 min. 13S

Table S2. Leave-one-out analysis by Jackknifing in linear discriminant analysis. Each groupcontains one concentration of analyte with 6 replicates.14S

Fig. S11. Absorbance spectra of (a) AuNPs and (b) AgNPs (0.27 nmol L⁻¹ in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 before and after exposure to the lysine, alanine, leucine, glycine, proline, threonine, methionine, valine, glutathione, FeCl₃, KCl, NaCl, CaCl₂, and ZnCl₂, as interferences. 15S

Table S3. Leave-one-out analysis by Jackknifing in linear discriminant analysis. Each group
contains analyte or interferences with 6 replicates.16S

Fig. S12. Two-dimensional LDA plot, after combining the real sample with the training set data. Plasma was spiked with A β 40 and A β 42 at concentrations of 500 nmol L⁻¹.

17S

Fig. S1. UV–Vis spectrum, intensity size distribution, and TEM image of AuNPs (a, b, c, respectively), and AgNPs (d, e, f, respectively).

Fig. S2. Absorbance spectra of AuNPs (0.27 nmol L⁻¹) in the presence of 300 nmol L⁻¹ of A β 40 and A β 42 at pH 5.0, 20 min.

Fig. S3. Effect of time on the aggregation process of A β 40 (300 nmol L⁻¹) in the presence of 130 µmol L⁻¹ of Cu(II), 0.27 nmol L⁻¹ of (a) AuNPs or (b) AgNPs and pH 5.0.

Fig. S4. Absorbance spectra of AuNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0, 20 min, and Aβ40, Aβ42, HSA at different concentration of (a) 50, (b) 75, (c) 100, (d) 150, (e) 200, (f) 300, (g) 400, and (h) 500 nmol L⁻¹.

Fig. S5. Absorbance spectra of AgNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0, 20 min, and A β 40, A β 42, HSA at different concentration of (a) 50, (b) 75, (c) 100, (d) 150, (e) 200, (f) 300, (g) 400, and (h) 500 nmol L⁻¹.

Fig. S6. Intensity size distribution of the AuNPs (a), AuNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 40 (b), AuNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and AuNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and AuNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and AuNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and AuNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and AuNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of HAS (d).

Fig. S7. Intensity size distribution of the AgNPs (a), AgNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 40 (b), AgNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and AgNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and AgNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and AgNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and AgNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of A β 42 (c) and AgNPs (0.27 nmol L⁻¹) in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 at 20 min and 300 nmol L⁻¹ of HAS (d).

Fig. S8. Absorbance response patterns of sensor elements against A β 40, A β 42 and HSA at concentrations (a) 50, (b) 75, (c) 100, (d) 150, (e) 200, (f) 300, (g) 400, and (h) 500 nmol L⁻¹ at 3 wavelengths of 420, 530, 620 nm.

Fig. S9. Heat map of the absorbance response patterns for sensor elements against A β 40, A β 42 and HSA at concentrations (a) 50, (b) 75, (c) 100, (d) 150, (e) 200, (f) 300, (g) 400, and (h) 500 nmol L⁻¹ at 3 wavelengths of 420, 530, 620 nm. In the rainbow color scale, a dark red is for the highest positive value and a dark purple is for the highest negative value.

Table S1. Leave-one-out analysis by Jackknifing in linear discriminant analysis. Each group contains 8 concentrations of analyte (A β 40, A β 42, and HSA) with 6 replicates.

	Predicted Group							
	Αβ40	Αβ42	HSA	Total				
Αβ40	48	0	0	48				
	100.00%	0.00%	0.00%	100.00%				
Αβ42	0	48	0	48				
	0.00%	100.00%	0.00%	100.00%				
HCA	0	0	48	48				
нъа	0.00%	0.00%	100.00%	100.00%				
Total	48	48	48	144				
	33.33%	33.33%	33.33%	100.00%				

Fig. S10. Absorbance spectra of (a) AuNPs and (b) AgNPs (0.27 nmol L⁻¹ in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 before and after exposure to total 500 nmol L⁻¹ of Aβ40, Aβ42 and their mixtures at 20 min.

	Predicted Group								
	1	2	3	4	5	6	7	Total	
1	6	0	0	0	0	0	0	6	
1	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	
2	0	6	0	0	0	0	0	6	
2	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	
2	0	0	6	0	0	0	0	6	
3	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	100.00%	
4	0	0	0	6	0	0	0	6	
4	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	100.00%	
E	0	0	0	0	6	0	0	6	
5	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	100.00%	
6	0	0	0	0	0	6	0	6	
0	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	100.00%	
7	0	0	0	0	0	0	6	6	
/	0.00%	0.00%	0.000%	0.00%	0.00%	0.00%	100.00%	100.00%	
Total	6	6	6	6	6	6	6	42	
	14.29%	14.29%	14.29%	14.29%	14.29%	14.29%	14.29%	100.00%	

Table S2. Leave-one-out analysis by Jackknifing in linear discriminant analysis. Each group contains one concentration of analyte with 6 replicates.

Fig. S11. Absorbance spectra of (a) AuNPs and (b) AgNPs (0.27 nmol L⁻¹ in the presence of 130 μ mol L⁻¹ Cu(II), pH 5.0 before and after exposure to the lysine, alanine, leucine, glycine, proline, threonine, methionine, valine, glutathione, FeCl₃, KCl, NaCl, CaCl₂, and ZnCl₂, as interferences.

Table S3. Leave-one-out analysis by Jackknifing in linear discriminant analysis	Each	group
contains analyte or interferences with 6 replicates.		

	Predicted Group							
	Αβ40		Αβ42		HSA		Interfereces	Total
Αβ40		6		0		0	0	6
	100.00%		0.00%		0.00%		0.00%	100.00%
Αβ42		0		6		0	0	6
	0.00%		100.00%		0.00%		0.00%	100.00%
HSA		0		0		6	0	6
	0.00%		0.00%		100.00%		0.00%	100.00%
Interfereces		0		0		0	84	84
	0.00%		0.00%		0.00%		100.00%	100.00%
Total		6		6		6	84	102
	5.88%		5.88%		5.88%		82.35%	100.00%

Fig. S12. Two-dimensional LDA plot clustering A β 40, A β 42, and HSA. Plasma was spiked with A β 40, A β 42 and HAS at concentrations of 500 nmol L⁻¹.