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Supporting Information S1 — Transmission Electronic Microscopy
(TEM) micrographs

Figure S1a: TEM micrographs of CNP-5.



Figure S1b: TEM micrographs of CNP-8. The particles are similar to those shown by
TEM or cryo-TEM in refs. [1-4]



Figure S1c: TEM micrographs of CNP-23.



Figure S1d - TEM micrographs of CNP-28. CNP-28 is a benchmark material (code
name NM-212) synthesized for the Organisation for Economic Co-operation and
Development (OECD) program "Testing a representative set of manufactured
nanomaterials".[5]



Supporting Information S2 — List and definitions of parameters used
in the manuscript

Parameter unit | Definition
Particle
characteristics
D nm Nanoparticle median diameter
s Size dispersity
p g cm3 | Particle density

Ce0, g mol' | Number-averaged molecular weight of
M .

n CeO; nanoparticle

ceo, g mol' | Weight-averaged molecular weight of

M )
w CeO, nanoparticle
Concentration
[Ce] M Cerium molar concentration
c gL Cerium oxide weight concentration
f e+ % Ce?* fraction
Ag m2 g' | Specific surface area
Cs m2 L' | Surface area concentration
csf 3+ m? L' | Ce3* surface area concentration
Ags g' m? | Effective specific surface
CEs m2 L-1 | Effective surface area concentration
Cof s m2 L1 | Ce¥* effective surface area
Ce + H
concentration

Catalytic activity
Asop % Superoxide radical dismutation
Acar % Hydrogen peroxide disproportionation

Nanoparticle median diameter D and dispersity s

The median particle diameter D and the dispersity s are derived from the TEM size
distributions shown in Fig. 1. The distributions are fitted using a log-normal function of
the form:

p(d,D,s) = (52.1)

2
exp( In (d/D))
\2mB(s)d 2B(s)>



In the
B(s) =
average diameter [6]. For 8 < 0.4, one has £=s [3,4,7].

revious equation, B(s) is related to the size dispersity s by the relationship

CeO

Number- and weight averaged molecular weight of CeO, nanoparticle: ” " and
CeO2

w
CeO

0 2 0
The number-average molecular weight ¥ =~ writes:

CeO
2 _
Mn_6

EpD3exp(4.552)NA (52.2)

For log-normal distribution of median diameter D and dispersity s, the if"™-moment is

density and Ny the Avogadro number [8].

CeO
Along the same line, the weight-average molecular weight M,* writes [9]:

CeO
2 _
MW—6

EpD3exp(13.552)NA (52.3)

The molar-mass dispersity P(s) for the particles then writes [8,9]:

CeO2

M w
b(s)=—1-= exp(952) (52.4)
M 2

n

As expected, uniform colloids are characterized by s = 0 and P = 1,

Ce™ fraction ' cc**
The Ce?* fraction is estimated from X-ray photoelectron spectrometry (XPS) as:

cedt
[P L (52.5)
Ce ce*t +cett

where Ce¢** and Ce** are determined from the fitting of the Ce 3d spectra integrated
intensities (see S3).
Specific surface area ‘s

The specific surface area “s is defined as the ratio between the particle surface and its
mass. Taking into account the dispersity, one gets:

Ag= = 6exp (- 2.55%)/pD (52.6)




Surface area concentration s and ° ce**
The surface area concentration is the product of the actual weight concentration ¢ (in g
L-1) and the specific surface area 4s (in m2 g-):

6cexp ( - 2.5s°
csz%z Agc (52.7)

‘s is then expressed in m2 L-1. The product sl 3+ then represents the Ce3* surface area
concentration.

Effective Specific surface area Ags and Surface area concentration Cts

The effective parameters “£s and usf ce** are determined using the effective specific
surface area “4s which is calculated from 4s (Eq. S$2.6) and from a normalizing
coefficient measured from amperometry (Table 2)

Catalytic activity 4sop and 4car

The SOD and CAT catalytic activities of nanoceria 4soo and 4car are defined as the
percentages of dismutated superoxide radicals and of decomposed H,0O, respectively,
as determined at the end of the assay.



Supporting Information S3 — X-ray photoelectron spectrometry (XPS)
Ce 3d spectra
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Figure S3 - Decomposed XPS spectra for the Ce 3d core level in nanoceria. The peaks
are due to ejected Ce3d electrons from Ce** and Ce3®* whose states and binding
energies are detailed in Table S1. There are 3 peaks associated with Ce** ions and 2
peaks associated with Ce?* ions each of them split in two, Ce3ds;, (Vi) and Ce3ds, (UY)
states, presenting a constant separation of ~18.5 eV. The three doublets corresponding
to Ce** are U™ (916.7 eV)/V’” (898.4 eV), U (901.0 eV)/V (882.5 eV), U” (907.3 eV)/\V”
(888.8 eV) and the two doublets corresponding to Ce3* are U’ (903.5 eV)/V’ (884.9 eV),
U, (898.8 eV)/V, (880.3 eV)).5 The spectra were decomposed using the free software
XPSPEAKS 4.1. Some conditions were assumed for spectrum deconvolution: 1)
Gaussian-Lorentzian curves were used for the individual peaks, the weight of the
Gaussian Lorentzian contribution being optimized for the U peak and fixed for all the
others; 2) the full width at half maximum (FWHM) of split peaks have the same values.
The fraction of Ce3* ions was calculated from the integrated intensities of the XPS
peaks through Eq. S2.

34 U+V +Uo+Vo
ce*t = 100%

U'+V +U+V+U +V"+U +V +Uo+Vo Equation S2
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Table S3 — Parameters and integrated intensities of peaks from XPS Ce 3d spectra of
nanoceria and the Ce3* fraction calculated.

Binding

lon State CNP-5 CNP-8 CNP-23 CNP-28
energy (eV)
Ce* u” 916.7 9794/1.96/43 11933/2.13/13 15432/3.15/3 12427/2.53/24
Vv 898.4 12999/1.96/43 16579/2.13/13 23149/3.15/3 16984/2.53/24
u 901.0 8844/1.75/43 11375/1.95/13 14411/2.85/3 11086/2.38/24
\Y, 882.5 12974/1.75/43 15391/1.95/13 21616/2.85/3 16485/2.38/24
u” 907.3 8099/3.96/43 7860/3.83/13 10397/4.69/3 7765/4.1/24
% 888.8 9310/3.96/43 13397/3.83/13 19471/4.89/3 13142/4.1/24
Ce’* v 903.5 15823/4.37/43 4213/2.75/13 3969/2.51/3 3251/2.54/24
\% 884.9 27141/4.37/43 7991/2.75/13 6445/2.51/3 4876/2.54/24
Uo 898.8 2093/2.71/43 0/-1- 0/-/- 0/-1-
Vo 880.3 736/2.71/43 0/-1- 0/-/- 0/-1-
Ce3* (%) 42.5 13.8 9.06 9.45

a FWHM stands for Full width at half maximum; ® Gaussian/Lorentzian percentage on fitted curves
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https://en.wikipedia.org/wiki/Full_width_at_half_maximum

Supporting Information S4 — Wide-Angle X-Ray Scattering (SAXS)
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Figure S4: a) Diffractogram of CNP-5, CNP-8, CNP-23 and CNP-28 obtained by
WAXS. The positions of the Bragg peaks index for fluorite structure, space group
Fm3m. b) Nanoceria lattice constants obtained by Rietveld Maud method as a function
of the Ce?* fraction obtained by XPS. The lattice constant increases linearly with the
Ce?* fraction, in agreement with Vegard’s law [10]. c) Particle characteristics obtained
from TEM and WAXS.
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Supporting Information S5 — UV-vis absorption spectra
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Figure S5a: UV-vis spectra of a dispersion of CNP-8 ([Ce] = 0.17 mM) after addition of

hydrogen peroxide to final concentrations varying from 0 to 882 mM. Inset: Absorption
at 400 nm in function of the final hydrogen peroxide concentration.
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Figure S5b: UV-vis spectra of a dispersion of CNP-8 as a function of the wavelength at
different times after the addition of H202. Left-hand side: between 0 and 3 days; Right-
hand side: between 3 and 6 days. Inset: UV-Vis adsorption kinetics at 250 and 400 nm.
In these figures, it can be seen that the spectra return to their initial state, confirming the
catalytic cycling properties of nanoceria.
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Supporting Information S6 — Superoxide dismutase (SOD)-like activity
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Figure S6: Fitting the SOD-like activity data as function of the effective surface area
concentration times the Ce3* percentage. The data in a) are in semi-log scales whereas
those in b) and in linear scales.
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Supporting Information S7 — Catalase (CAT)-like activity
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Figure S7a: Fitting the CAT-like activity data as function of the effective surface area
concentration times the Ce3+ percentage for the four CNPs: a) CNP-5; b) CNP-8; c)
CNP-23 and d) CNP-28.
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Figure S7b: Same as in Fig. 7a using the effective surface area concentration times the
Ce?* percentage.
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