Graphene oxide size and oxidation degree govern its

supramolecular interactions with siRNA

Giacomo Reina, *^a Ngoc Do Quyen Chau, ^a Yuta Nishina, ^{b,c} Alberto Bianco * ^a

^aUniversity of Strasbourg, CNRS, Immunopathology and therapeutic chemistry, UPR 3572, 67000 Strasbourg, France. E-mail : <u>a.bianco@ibmc-cnrs.unistra.fr</u>, <u>g.reina@ibmc-cnrs.unistra.fr</u>

^bPrecursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan. ^cResearch Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan

Electronic Supplementary Information

Figure S1. Lateral size distribution calculated by TEM, on the inset TEM image of GO_s.

Figure S2. TGA spectra of the different graphene derivatives of GO_s . GO_s in black (a), rGO_s in red (b), and rGO_s - O_3 in blue (c).

Figure S3. XPS spectra of different graphene derivatives of GO_s and their corresponding PEI functionalization: a) GO_s in black (a), rGO_s in red (b), and rGO_s-O_3 in blue (c); b) GO_s -PEI in black (a), rGO_s -PEI in red (b), and rGO_s-O_3 -PEI in blue (c) The C(1s) photoelectron binding energy was set at 284.5 ± 0.2 eV and used as reference for calibrating the other peak positions.

Figure S4. Deconvolution of the C(1s) peak for GO_s (a), rGO_s (b), and rGO_s-O₃ (c).

Figure S5. TGA spectra of PEI functionalized GO: a) GO_s in black (a), GO_s -PEI in red (b); b) rGO_s in black (a), rGO_s-PEI in red (b); c) rGO_s-O₃ in black (a), rGO_s-O₃-PEI in red (b). GO displays a typical thermogram with degradation in three steps. The significant weight loss below 100 °C is ascribed to mainly the desorption water. PEI decomposition was recorded above 300 °C. We estimate a functionalization between 6 and 10% in weight of PEI for the GO_L, similar to that estimated for GO_s [1].

Figure S6. High resolution XRD spectra of the GO_s series. On the left: a) GO_s (black line), b) rGO_s (red line), and (c) rGO_s-O₃ (blue line); on the right: a) GO_s-PEI (black line), b) rGO_s-PEI (red line), and (c) rGO_s-O₃-PEI (blue line).

Figure S7. Complexation of different graphene derivatives of GO_S (first column) and their corresponding PEI functionalized (second column): row a) GO_s, row b) rGO_s, row c) rGO_s-O₃. Top: image of the electrophoresis gel; bottom: histograms showing the free siRNA signal at different GO/siRNA mass ratios.

Figure S8. HPLC analysis of Alexa Fluor[®]647 labelled siRNA: blue curve corresponds to native siRNA, red curve correspond to the siRNA denaturated by formaldehyde, and black curve corresponds to siRNA after incubation with GO_s.

Figure S9. a) Calibration curve of Yakima Yellow signal at 522 nm; b) calibration curve of siRNA signal a 260 nm.

Figure S10 Emission spectra of a) 3'-Cy3 (black line) and 3'-5'-Cy3/Cy5 (red line) labelled untouched siRNA and b) after incubation with $GO_{s.}$ c) Emission spectra of 5'-Alexa Fluor[®]546 (black line) and 5'-5'-Alexa Fluor[®]546/ Alexa Fluor[®]647 (red line) labelled untouched siRNA and d) after incubation with $GO_{s.}$ Mass ratio siRNA/GO corresponds to 1:20. Excitation wavelegth 523 nm.

Table S1. N atomic % of PEI functionalized GO	calculated from the XPS peak N1s at 400 eV.

	Small GO		
	Starting	Hydrothermal	Re-epoxidation
PEI-functionalized	GO _s -PEI	rGO _s -PEI	rGO _s -O ₃ -PEI
N atomic %	7.4 ± 0.1	5.9 ± 0.1	10.1 ± 0.1

NOTE: The values for large GO_L are reported in our previous publication [1].

Table S2. [002] Calculated distance from XRD using Bragg law, $\lambda = 1.541$ Å.

Sample	XRD max. (2θ°)	Distance (Å)
GOs	11.6	7.6
rGO _S	12.9	6.8
rGO _S -O ₃	12.8	6.9
GO _S -PEI	9.5	9.3
rGO _s -PEI	9.5	9.3
rGO _S O ₃ -PEI	9.5	9.3

Equations (1) and (2):

$$E = 1 - \frac{A_D I_{DA}}{A_{DA} I_D}$$
(1) $E = \frac{R_0^0}{R^6 + R_0^6}$ (2)

 A_D and A_{DA} are the UV absorbance at the excitation wavelength of the donor (535 nm) alone and of the donor in the presence of the acceptor, respectively, while I_D and I_{DA} are the fluorescence intensities of the solution of the donor alone and the donor in the presence of the acceptor at the maximum (570 nm for Alexa Fluor[®]546, and 565 nm for Cy[®]3). The FRET distances (R) have been calculated following equation (2), where R is the distance between the donor and the acceptor, and R_0 is the Förster radius distance.

References

[1] N. D. Q. Chau, G. Reina, J. Raya, I. A. Vacchi, C. Ménard-Moyon, Y. Nishina and A. Bianco, *Carbon*, 2017, **122**, 643–652.