Supporting Information

for

Co oxide nanostructures for electrocatalytic water-oxidation: Effect of dimensionality and related properties

S. Gupta^a*, A. Yadav^b, S. Bhartiya^c, M. K. Singh^c, A. Miotello^d, A. Sarkar^a, N. Patel^b

^aDepartment of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.

^bDepartment of Physics, University of Mumbai, Santacruz (E), Mumbai 400 098, India.

^cLaser Material Section, Raja Ramanna Centre for Advanced Technology, Indore, India.

^dDipartimento di Fisica, Università degli Studi di Trento, I-38123 Povo, Trento, Italy.

Additional Experimental Details:

Chemicals and Materials:

Cobalt nitrate hexahydrate $[Co(NO_3)_2.6H_2O, 99\%]$ (SDFCL), Cobalt acetate $[C_4H_6CoO_4, 99.9\%]$ (Sigma-Aldrich), Urea $[Co(NH_2)_2, 98\%]$ (SDFCL) and Sodium Fluoride [NaF, 98.5%] (Merck) were used for synthesizing the catalysts. Potassium hydroxide [KOH, 98%] (Merck) was used to prepare the electrolyte solution. Deionized water (Millipore) was used for all practical purposes.

Photo-Fenton degradation reaction:

The photocatalytic performance of the Co oxide nanostructures was evaluated by degradation of methylene blue (MB) dye under photon irradiation. A borosilicate photochemical reactor (250 mL) was used along with a 150 W collimated Xenon arc lamp (Hamamatsu) in a top-down

assembly. The photo-reactor was placed at a fixed distance of 47cm from the Xe source. 5 mg of each Co oxide sample was added to 50 mL of 10 ppm MB dye solution and 1 mL of hydrogen peroxide (H₂O₂, 30%) which acts as the oxidizing agent for photo-fenton reaction. Prior to beginning the degradation test, the entire mixture is kept in the dark and stirred for about 30 min so that the adsorption/desorption equilibrium is established between the catalyst surface and the dye solution. Once the equilibrium is established, the dye-catalyst solution is irradiated with Xe arc lamp to study the degradation of dye. With light irradiation, at regular intervals of 10 minutes, 3 mL of reaction solution was withdrawn and an absorption spectra was recorded using a UV-Vis spectrophotometer (Implen Nano Photometer). The change in concentration of MB dye is analyzed by observing the decrement in absorption wavelength of 665 nm, which is characteristic to MB dye. All the experiments were performed at room temperature and were repeated at least 3 times to confirm the reproducibility of the results.

Fig. S1: Powder X-ray diffraction spectra for as prepared Co hydroxide nanoparticles, nanowires, nanosheets and nanocrystals.

Fig. S2: SEM images of annealed Co_3O_4 (a) nanoparticles, (b) nanowires, (c) nanosheets and (d)

nanocrystals.

Fig. S3. X-ray photo-electron spectra showing Co 2p_{3/2} and O 1s states for as prepared Co oxide
(a, e) nanoparticles, (b, f) nanowires, (c, g) nanosheets and (d, h) nanocrystals,
respectively.

Fig. S4. XPS survey spectra of Co_3O_4 nanostructures revealing presence of Co, O and C only, with no other impurities.

Sample	At% Composition from XPS		At% Composition from EDAX	
	Со	0	Со	0
Co ₃ O ₄ Nanoparticles	44.37	55.63	41.37	58.63
Co ₃ O ₄ Nanowires	45.44	54.56	46.88	53.12
Co ₃ O ₄ Nanosheets	34.30	65.70	36.89	63.11
Co ₃ O ₄ Nanocrystals	39.98	60.02	45.02	54.98

Table S1: Table showing percentage atomic composition of Co and O in annealed Co_3O_4 nanostructures obtained from XPS and EDAX.

Fig. S5: N_2 adsorption-desorption isotherms obtained from BET measurements for **Co(OH)**₂ NPs, showing H1 type of hysteresis loop belonging to Type IV isotherm.

Catalyst	BET Surface Area (m²/g)	Average pore diameter (nm)	Pore Volume (cm³/g)
Co ₃ O ₄ Nanoparticles	23.2	3.0	0.0082
Co ₃ O ₄ Nanowires	22.0	15.0	0.0768
Co ₃ O ₄ Nanosheets	24.1	4.5	0.0191
Co ₃ O ₄ Nanocrystals	15.6	3.9	0.0040

Table S2: Table showing physico-chemical properties of Co₃O₄ nanostructures obtained by BET measurement.

		Overpotential (mV vs RHE) to achieve			
Catalyst	Electrolyte			Tafel plot	Reference
		10	100 mA/cm ²	(mV/dec)	
		mA/cm ²			
Co ₃ O ₄ NPs	1 M KOH	392	430	44	This work
Co ₃ O ₄ NWs	1 M KOH	392	447	53	This work
Co ₃ O ₄ NSs	1 M KOH	394	456	52	This work
Co ₃ O ₄ NCs	1 M KOH	405	480	58	This work
Co ₃ O ₄ @	1 M KOH	310		69	1
carbon paper					
Co ₃ O ₄ nanocubes@	1 M KOH	280		69	2
NGraphene					
Co ₃ O ₄ Carbon	0.1 M KOH	290		70	3
porous Nano Arrays					
Sn doped Co ₃ O ₄	0.1 M KOH	354		85	4
Ni doped Co ₃ O ₄	0.1 M KOH	360		91	4
Fe doped Co ₃ O ₄	0.1 M KOH	370		87	4
Co ₃ O ₄ /NiCo ₂ O ₄	1 M KOH	340		88	5
Mesoporous Co ₃ O ₄	1 M KOH	380		48	6
nanoflakes					
Commercial Co ₃ O ₄	1 M KOH	451		59	6
NiCo ₂ O ₄	1 M KOH	330		60	7
CoNiO _x @rGO	0.1 M KOH	320		45	8
Co ₃ O ₄ @rGO	0.1 M KOH	370		64	8
CoNiO _x	0.1 M KOH	367		69	8
Co ₃ O ₄ @N-porous	0.1 M KOH	390		72	9
carbon					
Reduced Co ₃ O ₄	1 M KOH	340		47	10
Mesoporous Co ₃ O ₄	0.1 M KOH	411		60-70	11
Co ₃ O ₄ thin film	1 M NaOH	377		58	12
Ir/C	0.1 M KOH	370		91	9
RuO ₂	1 M KOH	370	457	88	This work

Table S3: Comparison of electrochemical parameters for OER between Co_3O_4 nanostructureswith other reports on Co_3O_4 based catalysts in alkaline medium.

Fig. S6: Tafel plot for commercial RuO_2 catalyst, yielding a Tafel slope value of 88 mV/dec.

Fig. S7: CV curves at different scan rates for Co₃O₄ (a) nanoparticles, (b) nanowires, (c) nanosheets and (d) nanocrystals in Ar saturated 1 M KOH solution to determine the double layer capacitance (C_{DL}).

Fig. S8: CV curve for Co(OH)₂ nanoparticles in Ar saturated 1 M KOH solution at a scan rate of 5 mV/s.

Fig. S9: Decrease in characteristic UV-Vis absorption peak of MB dye with time under Xe lamp illumination in presence of Co₃O₄ (a) nanoparticles, (b) nanowires, (c) nanosheets and (d) nanocrystals, via photo-Fenton reaction.

Fig. S10. Recycling test for degradation of MB dye via photo-Fenton reaction for Co_3O_4 (a) nanoparticles, (b) nanowires, (c) nanosheets and (d) nanocrystals.

Fig. S11: SEM images of Co_3O_4 (a) nanoparticles, (b) nanowires, (c) nanosheets and (d) nanocrystals, after 4 cycles of photo-Fenton reaction.

References:

- 1 X. Yang, H. Li, A.-Y. Lu, S. Min, Z. Idriss, M. N. Hedhili, K.-W. Huang, H. Idriss and L.-J. Li, *Nano Energy*, 2016, **25**, 42–50.
- 2 S. K. Singh, V. M. Dhavale and S. Kurungot, ACS Appl. Mater. Interfaces, 2014, 7, 442–451.
- 3 T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc., 2014, **136**, 13925–13931.
- 4 N.-I. Kim, Y. J. Sa, S.-H. Cho, I. So, K. Kwon, S. H. Joo and J.-Y. Park, *J. Electrochem. Soc.*, 2016,
 163, F3020–F3028.
- 5 H. Shi and G. Zhao, J. Phys. Chem. C, 2014, **118**, 25939–25946.
- S. Chen, Y. Zhao, B. Sun, Z. Ao, X. Xie, Y. Wei and G. Wang, ACS Appl. Mater. Interfaces, 2015, 7, 3306–3313.
- 7 Z. Peng, D. Jia, A. M. Al-Enizi, A. A. Elzatahry and G. Zheng, *Adv. Energy Mater.*
- 8 P. Li and H. C. Zeng, Adv. Funct. Mater.
- 9 Y. Hou, J. Li, Z. Wen, S. Cui, C. Yuan and J. Chen, *Nano Energy*, 2015, **12**, 1–8.
- Y.-R. Liu, G.-Q. Han, X. Li, B. Dong, X. Shang, W.-H. Hu, Y.-M. Chai, Y.-Q. Liu and C.-G. Liu, *Int. J. Hydrogen Energy*, 2016, **41**, 12976–12982.
- 11 Y. J. Sa, K. Kwon, J. Y. Cheon, F. Kleitz and S. H. Joo, J. Mater. Chem. A, 2013, 1, 9992–10001.
- 12 H. S. Jeon, M. S. Jee, H. Kim, S. J. Ahn, Y. J. Hwang and B. K. Min, ACS Appl. Mater. Interfaces,

2015, **7**, 24550–24555.