Electronic Supplementary Information for

Boosting Photocatalytic Overall Water Splitting by Co doping into Mn₃O₄ Nanoparticles as Oxygen Evolution Cocatalyst

Taizo Yoshinaga,^a Masaki Saruyama,^{*,b} Anke Xiong,^c Yeilin Ham,^c Yongbo Kuang,^c Ryo Niishiro,^{d,e} Seiji Akiyama,^{e,f} Masanori Sakamoto,^{*,b} Takashi Hisatomi,^c Kazunari Domen,^c and Toshiharu Teranishi^{*,b}

^a Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai,

Tsukuba, Ibaraki 305-8571, Japan

- ^b Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- ^c Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-

ku, Tokyo 113-8656, Japan

^d Mitsui Chemicals, Inc., 580-32 Nagaura, Sodegaura 299-0265, Japan

^e Japan Technogical Research Association of Artificial Photosynthetic Chemical Process

(ARPChem), 5-1-5 Kashiwanoha, Kashiwa 277-6589, Japan

^f Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamoshidacho, Aoba-ku, Yokohama 227-8502, Japan

Contents

- Fig. S1-S5
- Table S1

Fig. S1 TEM images of $Co_yMn_{1-y}O$ NPs synthesized in different conditions. (a) 50 mol%Co using Co(II) stearate (9.7±0.9 nm), (b) 60 mol%Co using Co(II) stearate (9.8±1.8 nm), (c) 10 mol%Co using Co(II) acetate (10.9±0.8 nm), and (d) 10 mol%Co using Co(II) acetylacetonate. (e) TEM image of Co NPs (11.3±0.6 nm).

Fig. S2 XRD patterns of $Co_x Mn_{3-x}O_4$ NPs with *x* of 0, 0.3, 0.6, 0.9, 1.2, 1.8 and 3. Crystal phase transition from tetragonal spinel (I41/amd) to cubic spinel (Fd-3m) occurred when *x* became larger than 1.2.

Fig. S3 TEM images of Rh@Cr₂O₃ NPs on Co_xMn_{3-x}O₄ (Co 40 mol%) loaded SrTiO₃.

Fig. S4 (a) Mott-Schottky plot and (b) Tauc plot of $BiVO_4$ film.

Fig. S5 Schematic of calculated band structures of Co_xMn_{3-x}O₄, BiVO₄, and SrTiO₃.

Table S1 Calculated Mulliken electron negativity (χ), measured band gap energy (E_g), isoelectric point (IEP), energy level of conduction band edge (E_{cb}) and valence band edge (E_{vb}) of Co_xMn_{3-x}O₄, BiVO₄, and SrTiO₃.

	χ	E _g (measured)	IEP / pH	$E_{\rm cb}$ / eV vs	$E_{\rm vb}$ / eV vs
		/ eV		NHE at pH 7	NHE at pH 7
Mn ₃ O ₄	5.57	2.74	3.8 ^[a]	-0.49	+2.25
Co _{1.2} Mn _{1.8} O ₄	5.70	2.40	4.2 ^[b]	-0.16	+2.24
Co_3O_4	5.90	2.09	7.5 ^[c]	+0.39	+2.48
BiVO ₄	6.04	2.62	3.5 ^[d]	+0.02	+2.64
SrTiO₃	5.34	3.22	8.5 ^[e]	-0.68	+2.54

 χ was calculated by using ionization energy and electron affinity of each atom. $^{[f]}$

IEP of Co_{1.2}Mn_{1.8}O₄ is assumed to be the same as that of CoMn₂O₄.^[b]

 E_{cb} and E_{vb} were estimated by using an equation below^[f]:

 $E_{cb} = \chi - E^c - 0.5 \times E_g + 0.059 \times (IEP - 7)$ $E_{vb} = E_{cb} + E_g$

where E^{c} is the energy of free electrons on the hydrogen scale (4.5 eV vs NHE).

References

[a] Z. Wang, J. Li, Y. Weng, M. Feng, Z. Zhuang and Y. Yu, J. Mater. Chem. A, 2017, 5, 15650.

[b] M. Y. Nassar and S. Abdallah, *RSC Adv.*, 2016, **6**, 84050.

[c] C. Pirovano and S. Trasatti, J. Electroanal. Chem. 1984, 180, 171.

[d] R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han and C. Li, *Nat. Commun.* 2013, 4, 1432.

[e] M. Kosmulski, J. Colloid Interface Sci., 2011, 353, 1.

[f] J. Wang, F. E. Osterloh, J. Mater. Chem. A, 2014, 2, 9405.