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Abstract

Within this Electronic Supporting Information we present full derivations of the

calculations of overlap integrals and matrix elements.
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A. Overlap integrals

The overlap integrals between the conduction band and hole states of eqs. (12) and (14)

respectively, as a function of the position of the hole a are defined as

Sh,(lnm)(a) =
α
3/2
h√
π
Nln

R∫
0

dr r2
∫
dΩre

−αh|r−a|jl

(
ρln

r

R

)
Y m
l (Ωr), (S1)

where the symbol Ωr appearing as the argument of the spherical harmonic is a short notation

for the arguments (θ, ϕ). In eq. (S1), |r − a| depends on angles through the cosine of the

angle γ formed by the vectors a and r. We use the radius R to normalize variables x = r
R

and

a0 = a
R

and change cos γ = t, and expand e−αh|r−a| in a series of the Legendre polynomials

Pj(t) as

e−αh|r−a| = e−ρh
√
a20+x

2−2a0xt =
∞∑
j=0

fj(a0, x)Pj(t), (S2)

with ρh = Rαh. The coefficients fj(a0, x) in eq. (S2) are given by

fj(a0, x) =
2j + 1

2

+1∫
−1

dt e−ρh
√
a20+x

2−2a0xtPj(t). (S3)

Expression (S3) can be evaluated analytically. Next, we substitute the last identity of eq. (S2)

into eq. (S1), make use of the addition theorem for spherical harmonics:

Pj(cos γ) =
4π

2j + 1

j′=j∑
j′=−j

Y j′∗
j (Ωr)Y

j′

j (Ωa), (S4)

and obtain

Sh,(lnm)(a) = Y m
l (Ωa)

α
3/2
h√
π
NlnR

3 4π

2l + 1

1∫
0

dx x2fl(a0, x)jl(ρlnx). (S5)

For the state nS, Y 0
0 (Ωa) = 1√

4π
, the corresponding value of Sh,1S is plotted in Figure 1.
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For comparative purposes, the angular average [ 1
4π

∫
dΩaSh,(lnm)(a)S∗h,(lnm)(a)]1/2 is plotted

in Figure 1 for states with l 6= 0. This average goes over the correct value of Sh,nS for l = 0.

For a = 0, Sh,nS has the analytical expression

Sh,nS(a = 0) =
(2ρh)

3/2

|j1(ρ0n)|

1∫
0

dx x2e−ρhxj0(ρ0nx) ≈

≈ (2ρh)
3/2

|j1(ρ0n)|

∞∫
0

dx x2e−ρhxj0(ρ0nx) =
23

|j1(ρ0n)|
ρ
5/2
h

(ρ2h + ρ20n)2
, (S6)

which, for large values of R, behaves like Sh,nS ≈ 1
R3/2 .

B. Matrix elements between orthogonal orbitals

To evaluate the matrix elements M̃h,α (α 6= h) between orthogonal orbitals, we make use

of eq. (15) of the main text to express them in terms of the matrix elements between non-

orthogonal orbitals as

M̃h,α =
∑
γ,β

(S−1/2)h,γM
n−o
γ,β (S−1/2)β,α. (S7)

To obtain an approximate expression for eq. (S7), we introduce eq. (16) of the main text

into eq. (S7) yielding, up to order OS2
α,β,

M̃h,α = Mn−o
h,α −

1

2

∑
β

Mn−o
h,β Sβ,α −

1

2

∑
γ

Sh,γM
n−o
γ,α (S8)

The second term on the right hand side of eq. (S8) is identically zero because, for α 6= h,

Sβ,α 6= 0 only if β = h but Mn−o
h,h = 0. This leads to eq. (17) of the main text.
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C. Matrix elements between non-orthogonal orbitals

The matrix elements Mn−o
h,(lnm)(a), given by eq. (6) of the main text, between the conduction

band and hole states of eqs. (12) and (14), respectively, depend on the electric field expressed

by eq. (8). Notice that eq. (8) implies ~∇ · E = 0. We write down the term E · ~∇φlnm as

E · ~∇φlnm =

(
1− α(ω,R)

R3

)
Nln

[
∂jl(ρln

r
R

)

∂r
sin θ cosϕY m

l (θ, ϕ)+

+
jl(ρln

r
R

)

r

(
cos θ cosϕ

∂Y m
l (θ, ϕ)

∂θ
− sinϕ

sin θ

∂Y m
l (θ, ϕ)

∂ϕ

)]
. (S9)

The two different terms depending on the angles (θ, ϕ) appearing on the right hand side of

eq. (S9) can be expressed in terms of spherical harmonics with l′ = l± 1 and m′ = m± 1 as

sin θ cosϕY m
l (θ, ϕ) =

1

2

[
Cm−1
l+1 Y

m−1
l+1 (Ωr)− Cm−1

l−1 Y
m−1
l−1 (Ωr)−

Cm+1
l+1 Y

m+1
l+1 (Ωr) + Cm+1

l+1 Y
m+1
l−1 (Ωr)

]
, (S10a)

cos θ cosϕ
∂Y m

l (θ, ϕ)

∂θ
− sinϕ

sin θ

∂Y m
l (θ, ϕ)

∂ϕ
=

1

2

[
−lCm−1

l+1 Y
m−1
l+1 (Ωr)−

(l + 1)Cm−1
l−1 Y

m−1
l−1 (Ωr) + lCm+1

l+1 Y
m+1
l+1 (Ωr) + (l + 1)Cm+1

l−1 Y
m+1
l−1 (Ωr)

]
, (S10b)

where we have used the short notation Ωr for the angular variables (θ, ϕ), and with the

coefficients given by

Cm+1
l+1 =

√
(l +m+ 1)(l +m+ 2)

(2l + 1)(2l + 3)
(S11a)

Cm−1
l+1 =

√
(l −m+ 1)(l −m+ 2)

(2l + 1)(2l + 3)
(S11b)

Cm+1
l−1 =

√
(l −m− 1)(l −m)

(2l − 1)(2l + 1)
(S11c)

Cm−1
l−1 =

√
(l +m− 1)(l +m)

(2l − 1)(2l + 1)
(S11d)
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Substituting eqs. (S10) into eq. (S9), the terms depending on the radial coordinate r that are

proportional to each of the spherical harmonics with l′ = l+ 1 and m′ = m± 1 rearrange to

yield a term proportional to the spherical Bessel function jl+1(ρln
r
R

) and these proportional to

the spherical harmonics with l′ = l−1 and m′ = m±1 rearrange to yield a term proportional

to the spherical Bessel function jl−1(ρln
r
R

). This allows us to express Mn−o
h,(lnm)(a) as

Mn−o
h,(lnm)(a) =

α
3/2
h√
π
Nln

(
1− α(ω,R)

R3

)
ρln
R

R∫
0

dr r2
∫
dΩr e

−αh|r−a|×

×
[
jl+1

(
ρln

r

R

) (
Cm+1
l+1 Y

m+1
l+1 (Ωr)− Cm−1

l+1 Y
m−1
l+1 (Ωr)

)
+

+ jl−1

(
ρln

r

R

) (
Cm+1
l−1 Y

m+1
l−1 (Ωr)− Cm−1

l−1 Y
m−1
l−1 (Ωr)

)]
. (S12)

Substituting eq. (S2) into eq. (S12) yields the final expression for Mn−o
h,(lnm)(a) as

Mn−o
h,(lnm)(a) =

α
3/2
h√
π
Nln

(
1− α(ω,R)

R3

)
ρln
R

4πR3×

×

(Cm+1
l+1 Y

m+1
l+1 (Ωa)− Cm−1

l+1 Y
m−1
l+1 (Ωa)

) 1

2l + 3

1∫
0

dx x2fl+1(a0, x)jl+1(ρlnx)+

+
(
Cm+1
l−1 Y

m+1
l−1 (Ωa)− Cm−1

l−1 Y
m−1
l−1 (Ωa)

) 1

2l − 1

1∫
0

dx x2fl−1(a0, x)jl−1(ρlnx)

 . (S13)

Following an identical procedure, the matrix elements Mn−o
(l′n′m′),(lnm) between orbitals (lnm)

and (l′n′m′) are found to be

Mn−o
(l′n′m′),(lnm) = NlnNl′n′

(
1− α(ω,R)

R3

)
ρln
R
R3×

×

δl′,l+1

(
Cm+1
l+1 δm′,m+1 − Cm−1

l+1 δm′,m−1
) 1∫

0

dx x2jl+1(ρl′n′x)jl+1(ρlnx) +

+ δl′,l−1
(
Cm+1
l−1 δm′,m+1 − Cm−1

l−1 δm′,m−1
) 1∫

0

dx x2jl−1(ρl′n′x)jl−1(ρlnx)

 . (S14)
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Substituting eqs. (S13), (S14) and (S5) into eq. (17) of the main text, one obtains M̃h,(lnm)(a)

as a sum of four terms each one being proportional to one of the products Cm±1
l±1 Y

m±1
l±1 (Ωa).

The angular average 1
4π

∫
dΩa|M̃h,(lnm)|2 is then used in the calculation of the emission spectra

and the corresponding values of τph.
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