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Abstract

Within this Electronic Supporting Information we present full derivations of the

calculations of overlap integrals and matrix elements.



A. Overlap integrals

The overlap integrals between the conduction band and hole states of eqgs. (12) and (14)

respectively, as a function of the position of the hole a are defined as
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where the symbol €2, appearing as the argument of the spherical harmonic is a short notation
for the arguments (6, ). In eq. (S1), |r — a| depends on angles through the cosine of the

angle y formed by the vectors a and r. We use the radius R to normalize variables r = % and

ag = % and change cosy = t, and expand e~orlr=al in 4 series of the Legendre polynomials

P;(t) as
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with p, = Roy,. The coefficients f;(ag, ) in eq. (S2) are given by
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Expression (S3) can be evaluated analytically. Next, we substitute the last identity of eq. (S2)

into eq. (S1), make use of the addition theorem for spherical harmonics:
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For the state nS, Y () = \/%E, the corresponding value of Sy 15 is plotted in Figure 1.



For comparative purposes, the angular average |- [ dS2aSh,(tnm) (Q) S} (1m) (a)]'/? is plotted
in Figure 1 for states with { # 0. This average goes over the correct value of S}, g for I = 0.

For a = 0, Sy ns has the analytical expression
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which, for large values of R, behaves like S}, ,,5 ~ #.

B. Matrix elements between orthogonal orbitals

To evaluate the matrix elements M}W (o # h) between orthogonal orbitals, we make use
of eq. (15) of the main text to express them in terms of the matrix elements between non-

orthogonal orbitals as
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To obtain an approximate expression for eq. (S7), we introduce eq. (16) of the main text

into eq. (S7) yielding, up to order (’)Sgﬁ,
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The second term on the right hand side of eq. (S8) is identically zero because, for o # h,
Spa # 0 only if 8 =h but M} = 0. This leads to eq. (17) of the main text.



C. Matrix elements between non-orthogonal orbitals

The matrix elements M, IZ(_lZm)(a), given by eq. (6) of the main text, between the conduction

band and hole states of eqs. (12) and (14), respectively, depend on the electric field expressed

by eq. (8). Notice that eq. (8) implies V -E = 0. We write down the term E - Ve as
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The two different terms depending on the angles (6, ¢) appearing on the right hand side of

eq. (S9) can be expressed in terms of spherical harmonics with I’ =1+ 1 and m' =m +1 as
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where we have used the short notation . for the angular variables (0, ), and with the

coefficients given by
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Substituting eqgs. (S10) into eq. (S9), the terms depending on the radial coordinate r that are
proportional to each of the spherical harmonics with I’ =1+ 1 and m’ = m + 1 rearrange to
yield a term proportional to the spherical Bessel function j;11(pi, ) and these proportional to
the spherical harmonics with I’ = [—1 and m’ = m=+1 rearrange to yield a term proportional

to the spherical Bessel function ji—1 (7). This allows us to express M;" ;> (a) as
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Substituting eq. (S2) into eq. (S12) yields the final expression for My o) (a) as
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Following an identical procedure, the matrix elements Mgl‘,; ?m,) (tnm) between orbitals (Inm)

and (I'n'm’) are found to be
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Substituting eqs. (S13), (S14) and (S5) into eq. (17) of the main text, one obtains Mm(lnm) (a)
as a sum of four terms each one being proportional to one of the products Cy/='Y; 5 (€,).
The angular average ﬁ f an|M h(Inm) |2 is then used in the calculation of the emission spectra

and the corresponding values of 7,.



