Electronic supporting information for

Silver Nanowires As Infrared-Active Material for Surface-Enhanced Raman Scattering

Maurizio Becucci^{1,2}, Monica Bracciali³, Giacomo Ghini³, Cristiana Lofrumento¹, Giangaetano Pietraperzia^{1,2}, Marilena Ricci¹, Lorenzo Tognaccini¹, Silvana Trigari⁴, Cristina Gellini^{1*}, Alessandro Feis^{1*}

¹ Dipartimento di Chimica "Ugo Schiff", University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy

² European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy

³ Cabro SpA, via Sette Ponti 141 (loc. Tramarino), I-52100 Arezzo, Italy

⁴ Istituto dei Sistemi Complessi CNR, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (FI), Italy

Table S1 : Relative intensities of some benzenethiol bands in the SERS spectra shown in Fig. 2. I* represents the normalized intensity of the isopropanol band at 817 cm^{-1} .

	I*	I ₁₀₀₀	I ₁₀₂₃	I ₁₀₇₃
$\lambda_{\rm ex} = 407 \ \rm nm$	1.0	0.1	0.05	0.1
$\lambda_{\rm ex} = 514.5 \ \rm nm$	1.0	4.2	2.0	3.05
$\lambda_{\rm ex} = 1064 \ \rm nm$	1.0	2.7	1.85	2.6

Figure S1 – SERS spectra of benzenethiol as a function of concentration at $\lambda_{ex.}$ = 514.5 nm. The asterisks mark the bands of the internal standard isopropanol (5% v/v). The experimental conditions are described in Experimental Methods.

Figure S2 – SERS spectra of benzenethiol as a function of concentration at λ_{ex} = 1064 nm. The asterisks mark the bands of the internal standard isopropanol (5% v/v). The experimental conditions are described in Experimental Methods.

Figure S3 – SERS spectra of pyridine as a function of concentration at λ_{ex} .= 514.5 nm. The asterisks mark the bands of the internal standard isopropanol (5% v/v). The experimental conditions are described in Experimental Methods.

Figure S4 – Additional SEM images of AgNWs.

Figure S5 – Optoacoustic signal amplitude versus laser pulse energy at 355 nm λ_{ex} for the calorimetric reference solutions (left) and for AgNWs (right).