## Supporting information for

Synthesis of $\mathbf{S n O}_{2}$ nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells

Sawanta S. Mali, J. V. Patil, Hyungjin Kim Chang Kook Hong

Polymer Energy Materials Laboratory, School of Applied Chemical Engineering, Chonnam
National University, Gwangju, 500-757 (South Korea),
E-mail: sawantasolar@gmail.com (SSM) hongck@chonnam.ac.kr (CKH)

Fig. S1 Hysteresis analysis of $\mathrm{SnO}_{2}$ nanofibers and nanobelts


Figure S2. Analysis of steady-state photocurrent. Hysteresis analysis of PSC based on $\mathrm{SnO}_{2}$ ETL. The square symbols that lies between the two curves represents the stabilized photocurrent near the maximum power point as measured by holding the device at constant voltage under illumination for 50 s in ambient conditions.


## Reference

[1] H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.W. Wang, K. Wojciechowski, W. Zhang, Anomalous Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1511-1515-2691
[2] H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.W. Wang, K. Wojciechowski, W. Zhang, Anomalous Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1511-1515. - 2691

Table S1 Solar cell parameters measured for their forwards and reverse scan.

| SnO <br> 2 <br> ETL | Scan <br> direction | $\mathrm{J}_{\mathrm{SC}}$ <br> $\left(\mathrm{mAcm}^{-2}\right)$ | $\mathrm{V}_{\mathrm{OC}}$ <br> $(\mathrm{V})$ | FF | PCE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NFs | Forward | 1.021 | 19.78 | 0.59 | 11.92 |
|  | Reverse | 1.032 | 19.83 | 0.63 | 12.892 |
| NBs | Forward | 21.94 | 1.075 | 0.63 | 14.86 |
|  | Reverse | 22.46 | 1.081 | 0.66 | 16.02 |

Figure S3 Long-term stability of $\mathrm{SnO}_{2}$ ETLs based PSCs for respective morphology (a) $\mathrm{V}_{\mathrm{OC}}$ (b) $\mathrm{J}_{\mathrm{SC}}$ (c) FF, and (d) PCE values as a function time (days) stored in nitrogen filled glove box at room temperature.


