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S1:  Derivation of Dispersion Relation 

For 𝑁 identical plasmonic resonators in a chain modeled as harmonic oscillators1, 2 with center-to-

center spacing 𝑑, displacement 𝐱, restoring force spring constant 𝐾, effective mass 𝑚, and damping 

coefficient Γ, a force balance on the 𝑛th resonator leads to the equation of motion 

 ∑ 𝐵𝑙(𝑥𝑛−𝑙 + 𝑥𝑛+𝑙)

𝑁

𝑙=1

= 𝑚
𝑑2𝑥𝑛

𝑑𝑡2
+ Γ

𝑑𝑥𝑛

𝑑𝑡
+ 𝐾𝑥𝑛 (S1) 

where 𝑁 is the number of neighboring resonators to consider, 𝐵𝑙𝑥𝑛±𝑙 is the force exerted by the 

𝑙th neighbor on the 𝑛th resonator, and we have removed the vector notation in 𝐱 because we 

consider only longitudinal polarization.  Introducing the coupling strength of the 𝑙th neighbor with 

the 𝑛th resonator 𝜔𝑐,𝑙 = √𝐵𝑙/𝑚, the dipole moment 𝑝 = 𝑞𝑥 where 𝑞 is the charge, the damping 

ratio 𝜉 = Γ/𝑚, and the natural frequency 𝜔0 = √𝐾/𝑚, we obtain eqn (1) of the main text: 

 ∑ 𝜔𝑐,𝑙
2 (𝑝𝑛−𝑙 + 𝑝𝑛+𝑙) =

𝑑2𝑝𝑛

𝑑𝑡2
+ 𝜉

𝑑𝑝𝑛

𝑑𝑡
+ 𝜔0

2𝑝𝑛

𝑁

𝑙=1

 (S2) 

We search for propagating wave solutions to this equation of the form 𝑝𝑛±𝑙 = 𝑃e−𝜁𝑡−𝑖[𝑘(𝑛±𝑙)𝑑−𝜔𝑡], 

where 𝑃 is the amplitude, 𝑘 is the wavevector, 𝜔 is the real part of the complex frequency, and 𝜁 

is the imaginary part of the complex frequency corresponding to the spectral damping rate.  

Inserting this into eqn (S2), evaluating the time derivatives, and simplifying results in 

 ∑ 𝜔𝑐,𝑙
2 (e𝑖𝑘𝑙𝑑 + e−𝑖𝑘𝑙𝑑) = (−𝜁 + 𝑖𝜔)2 + (−𝜁 + 𝑖𝜔)𝜉 + 𝜔0

2

𝑁

𝑙=1

 (S3) 

Using the trigonometric identity cos 𝑦 = (e𝑖𝑥 + e−𝑖𝑥)/2 and rearranging the right side allows us 

to rewrite this as 
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 2 ∑ 𝜔𝑐,𝑙
2 cos(𝑘𝑙𝑑) = 𝜁(𝜁 − 𝜉) − 𝜔2 + 𝜔0

2 + 𝑖𝜔(𝜉 − 2𝜁)

𝑁

𝑙=1

 (S4) 

Separating the real and imaginary parts results in the dispersion relation given in eqn (2) of the 

main text: 

 
0 = 𝜔2 − 𝜁(𝜁 − 𝜉) − 𝜔0

2 + 2 ∑ 𝜔𝑐,𝑙
2 cos(𝑘𝑙𝑑)

𝑁

𝑙=1

     (Real) 

0 = 2𝜁 − 𝜉     (Imaginary) 
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S2:  Coupling Strength 

For two nanoscale resonators a and b separated by a distance much less than the resonant 

wavelength, such that the incident illumination exerts the same force 𝐹(𝑡) = 𝐹0e𝑖𝜔𝑡 on the 

resonators, we write coupled equations of motion for each resonator: 

 

𝐹0e𝑖𝜔𝑡 + 𝐵𝑥𝑏 = 𝑚
𝑑2𝑥𝑎

𝑑𝑡2
+ Γ

𝑑𝑥𝑎

𝑑𝑡
+ 𝑘𝑥𝑎 

𝐹0e𝑖𝜔𝑡 + 𝐵𝑥𝑎 = 𝑚
𝑑2𝑥𝑏

𝑑𝑡2
+ Γ

𝑑𝑥𝑏

𝑑𝑡
+ 𝑘𝑥𝑏 

(S6a) 
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One method to find solutions to these coupled equations is to take linear combinations of them.  

Adding the equations and introducing 𝑧 = 𝑥𝑎 + 𝑥𝑏 we obtain eqn (3) of the main text 

 
2𝐹0

𝑚
e𝑖𝜔𝑡 + 𝜔𝑐

2𝑧 =
𝑑2𝑧

𝑑𝑡2
+ 𝜉

𝑑𝑧

𝑑𝑡
+ 𝜔0

2𝑧 (S7) 

where we have used our previous definitions of 𝜔𝑐, 𝜉, and 𝜔0.  Solutions to this equation take the 

form 𝑧(𝑡) = 𝐶e𝑖𝜔𝑡.  Inserting this into eqn (S7) and solving for 𝐶 yields 
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 𝐶 =
2𝐹0/𝑚

(𝜔0
2 − 𝜔𝑐

2) − 𝜔2 + 𝑖𝜔𝜉
 (S8) 

The amplitude of oscillation is therefore given as 

 |𝐶| = √𝐶 ∙ 𝐶∗ =
2𝐹0/𝑚

(𝜔0
2 − 𝜔𝑐

2 − 𝜔2)2 + 𝜔2𝜉2
 (S9) 

and the phase is 

 tan(𝜙) =
Im(𝐶)

Re(𝐶)
= −

𝜉𝜔

𝜔0
2 − 𝜔𝑐

2 − 𝜔2
 (S10) 

which allows us to write the solution to the coupled equation of motion as 𝑧(𝑡) = |𝐶|e𝑖𝜙e𝑖𝜔𝑡.  

Only the real part of the force and the solution, however, is physical.  We can then express the 

power delivered to the two oscillators as 

 �̇�(𝑡) = Re[𝐹(𝑡)]Re [
𝑑𝑧

𝑑𝑡
] = −𝐹0𝜔|𝐶| cos(𝜔𝑡) sin (𝜔𝑡 + 𝜙) (S11) 

When this is averaged over once period of oscillation, we obtain eqn (4) of the main text 

 〈�̇�(𝑡)〉 =
𝐹0

2

𝜉𝑚
∙

𝜉2𝜔2

𝜉2𝜔2 + (𝜔0
2 − 𝜔𝑐

2 − 𝜔2)2
 (S12) 

The measured or simulated absorption peak corresponds to 𝑑〈�̇�(𝑡)〉/𝑑𝜔 = 0, which gives us eqn 

(5) in the main text 

 𝜔 = 𝜔2 = √𝜔0
2 − 𝜔𝑐

2 (S13) 
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S3:  Supplemental Figures 

 

Fig. S1  Absorption efficiency spectra calculated from the discrete dipole approximation for 

(a) SiC nanoparticles embedded in a background material of permittivity 𝜀𝑚 = 1 and (b) SiO2 

nanoparticles embedded in a background material of permittivity of 𝜀𝑚 = 4.  The particles are 12 

nm in diameter and separated by distances 𝑆 of 4, 6, 8, and 10 nm.  The spectrum for a single 

particle is also shown in black, which is used for comparison to the results from Mie theory shown 

in Fig. S2. As 𝑆 decreases, the coupling strength and shift in absorption peak from the single 

particle case increase.  
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Fig. S2  Absorption efficiency spectra calculated from Mie theory3, 4 for a 12 nm diameter 

(a) SiC nanoparticle embedded in a background material of permittivity 𝜀𝑚 = 1 and (b) SiO2 

nanoparticle embedded in a background material of permittivity of 𝜀𝑚 = 4.  The absorption peaks 

agree well with the results from the discrete dipole approximation shown in Fig. S1. 

 

  



 S7 

 

Fig. S3  Dispersion relation (solid blue line) for doped Si resonator chain in an intrinsic Si 

nanowire with 𝑁𝑒 = 1×1021 cm-3, 𝐴𝑅 = 0.8, 𝑆 = 10 nm, and a diameter of 150 nm.  The light line 

in intrinsic Si is also shown by the dashed black line.  For resonators that exhibit very strong 

coupling, such as these, the dispersion becomes very steep at low frequencies and wavevectors, 

such that the group velocities exceed the speed of light in the medium.  These portions of the 

dispersion relation are therefore removed from the solution. 
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