Supporting Information

Investigating dynamics of excitons in monolayer WSe₂

before and after organic super acid treatment

Xin Chen^{,#,a} Zhuo Wang,^{#,b,c,d} Lei Wang,^{*,a,c} Hai-Yu Wang,^{*,a} Yuan-Yuan Yue,^a Hai Wang,^a Xue-Peng Wang,^a Andrew T. S. Wee,^d Cheng-Wei Qiu,^c and Hong-Bo Sun^{a,e}

^aState Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China. ^bSZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China. ^cDepartment of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore. ^dDepartment of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore. ^eState Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China.

Figure S1. Measurements of organic super acid treated monolayer WSe₂ (osamonolayer) by femtosecond pump-probe system. (a) Transient absorption (TA) spectrum of osa-monolayer WSe₂ excited under 400 nm pump pulse with pump fluence of 7.4 μ J cm⁻². (b) TA spectrum of osa-monolayer WSe₂ excited under 400 nm pump pulse with pump fluence of 76 μ J cm⁻². (c) TA spectrum of osa-monolayer WSe₂ excited under 610 nm pump pulse with pump fluence of 0.1 μ J cm⁻². (d) TA spectrum of osa-monolayer WSe₂ excited under 610 nm pump pulse with pump fluence of 0.52 μ J cm⁻². (e) TA spectrum of osa-monolayer WSe₂ excited under 730 nm pump pulse with pump fluence of 0.12 μ J cm⁻². (f) TA spectrum of osa-monolayer WSe₂ excited under 730 nm pump pulse with pump fluence of 0.14 μ J cm⁻².

Figure S2. Measurements of monolayer WSe_2 without organic super acid treated by femtosecond pump-probe system. TA spectrum of monolayer WSe_2 excited under 610 nm pump pulse with pump fluence of 4.4 μ J cm⁻².

Figure S3. Measurements of bulk WSe₂ by femtosecond pump-probe system. (a) TA spectrum of bulk WSe₂ excited under 400 nm pump pulse with pump fluence of 71 μ J cm⁻². (b) TA spectrum of bulk WSe₂ excited under 400 nm pump pulse with pump fluence of 141 μ J cm⁻². (c) TA spectrum of bulk WSe₂ excited under 800 nm pump pulse with pump fluence of 22 μ J cm⁻². (d) TA spectrum of bulk WSe₂ excited under 800 nm pump pulse with pump fluence of 55 μ J cm⁻².

Figure S4. The normalized dynamics of A-exciton for bulk WSe₂ under 800 nm excitation with three pump fluences. Green line: pump fluence of 11 μ J cm⁻², purple line: pump fluence of 22 μ J cm⁻², red line: pump fluence of 54 μ J cm⁻².

Table S1. The enlargement factor of GSB signal of A exciton for monolayer WSe₂ after organic super acid treatment under different pump fluences.

610 nm excitation	osa-monolayer WSe ₂					Untreated
						monolayer WSe ₂
Pump fluence	0.1	0.33	0.52	1.1	2	4.4
(µJ cm⁻²)						
ΔO.D. intensity	0.23	0.84	1.04	0.51	0.68	0.21
(×10 ⁻²)						
Enlargement	48	53	42	9.7	7.1	
factor						