Supporting Information

Narrow-gap physical vapour deposition synthesis of ultrathin SnS_{1-x}Se_x (0≤x≤1)

Two-dimensional Alloys with unique polarized Raman spectra and high

(opto)electronic properties.

Wei Gao,^a Yongtao Li,^{*a} Jianhua Guo,^c Muxun Ni,^a Ming Liao,^a Haojie Mo^a and

Jingbo Li*a,b

E-mail: 979139835@qq.com, jbli@semi.ac.cn

^aCollege of Materials and Energy, Guangdong University of Technology, Guangzhou

510006, People's Republic of China

^bState Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China.

^cSchool of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.

Fig. S1 Optical images of the SnS_{1-x}Se_x alloyed nanosheets by different wafer methods: (a) one wafer method. (b) two wafers covered each other.

Fig. S2 (a) Schematic diagram for the traditional growth of 2D SnS_{1-x}Se_x alloyed nanosheets. The samples were grown on the top of the SiO₂/Si substrate. (b) Enlarged image of the black ellipse, showing the detailed orientation growth of the alloyed

Fig. S3 SEM-EDS of the SnS_{0.5}Se_{0.5} alloyed nanosheets

Element	Atomic (%)	Theoretical Atomic (%)
S	22.02	20
Se	20.15	20
S/Se ratio	1.09	1

Table S1. The calculation result extracted from the corresponding EDS spectrum in

Fig. S4 SEM-EDS of the $SnS_{0.75}Se_{0.25}$ alloyed nanosheets

Table S2. The calculation result extracted from the corresponding EDS spectrum in

	-	
Element	Atomic (%)	Theoretical Atomic (%)
S	32.79	30
Se	10.08	10
S/Se ratio	3.25	3

Figure S3.

Fig. S5 SEM-EDS of the $SnS_{0.25}Se_{0.75}$ alloyed nanosheets

Table S3. The calculation result extracted from the corresponding EDS spectrum in

8					
Element	Atomic (%)	Theoretical Atomic (%)			
S	12.23	10			
Se	28.94	30			
S/Se ratio	0.42	0.33			

Figure	S4.
--------	-----

Fig. S6 SEM images of the $SnS_{1-x}Se_x$ alloyed nanosheets via two wafers method (a)

Fig. S7 (a) Transfer characteristic curve of the device under drain voltage of 1 V under dark condition. Inset: the optical image of the device, scale bar: 10 μ m. (b) Output characteristic curves of the device under different V_g values (from 80 V to -80

V using step of 40 V).

Fig. S8 Macroscopic scheme of NGPVD method, showing the detailed orientation

growth of the alloyed sample.

Si sub	strate	Тор	SiO ₂ laye	r
N ₂ SnS/SnSe powder	Sublimation	Diffu Adsorption Decompositi	Assemblage Islon on	Aechanical pumping Sn • S • Se
		Bottom		

Fig. S9 Microcosmic scheme of NGPVD method, showing the detailed orientation

growth of the alloyed sample.

Fig. S10 Normalized Raman spectra of the $SnS_{0.5}Se_{0.5}$ nanosheets with different

Fig. S11 The microcosmic scheme of FETs devices based on $SnS_{1-x}Se_x$ alloyed samples. (a) and (b) for ultrathin sample. (c) and (d) for thicker sample (larger than 25

nm).