## **Supporting Information**

## Ultrathin tellurium dioxide: Emerging direct band gap semiconductor with high-mobility transport anisotropy

Shiying Guo,<sup>a</sup> Zhen Zhu,<sup>b</sup> Xuemin Hu,<sup>a</sup> Wenhan Zhou,<sup>a</sup> Xiufeng Song,<sup>a</sup> Shengli Zhang,<sup>a,\*</sup> Kan Zhang,<sup>a</sup> Haibo Zeng<sup>a,\*</sup>

<sup>a</sup>Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
<sup>b</sup>Materials Department, University of California, Santa Barbara, CA 93106, USA
\*Corresponding author: zhangslvip@njust.edu.cn and zeng.haibo@njust.edu.cn

**Table S1** The relaxed crystal parameters of three polymorphs for bulk TeO<sub>2</sub>: tetragonal  $\alpha$ -TeO<sub>2</sub> (Paratellurite, P4<sub>1</sub>2<sub>1</sub>2), orthorhombic  $\beta$ -TeO<sub>2</sub> (Tellurite, Pbca), and

| Phases      | α      | β     | γ                  |
|-------------|--------|-------|--------------------|
| Space group | P41212 | Pbca  | $P2_{1}2_{1}2_{1}$ |
| a(Å)        | 4.97   | 5.54  | 4.47               |
| b(Å)        | 4.97   | 5.73  | 5.11               |
| c(Å)        | 7.62   | 12.22 | 8.80               |

a metastable phase  $\gamma$ -TeO<sub>2</sub> (P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>).

**Table S2** The calculated cohesive energies of three polymorphs for bulk TeO<sub>2</sub> with two methods: PBE and PBE+vdw interactions. Our results show that the paratellurite and tellurite phases have very similar cohesive energies, which are larger than that of the metastable  $\gamma$ -TeO<sub>2</sub> phase, in consistent with the experiments.

| Phases               | α     | β       | γ        |
|----------------------|-------|---------|----------|
| $E-E_{\alpha}$       | 0 meV | -11 meV | +0.4 meV |
| $E-E_{\alpha}(+vdW)$ | 0 meV | +3 meV  | +60 meV  |

**Table S3** Lattice parameters a and b of  $TeO_2$  crystals. The lattice parameters (a and b) decrease progressively while thinning the thickness of  $TeO_2$  crystal.

| N <sub>L</sub> | 1     | 2     | 3     | 4     | 5     | 6     | bulk  |
|----------------|-------|-------|-------|-------|-------|-------|-------|
| a (Å)          | 5.459 | 5.503 | 5.518 | 5.525 | 5.529 | 5.532 | 5.541 |
| b (Å)          | 5.726 | 5.727 | 5.731 | 5.732 | 5.733 | 5.733 | 5.734 |



Fig. S1 The relaxed three polymorphs for bulk TeO<sub>2</sub>: tetragonal  $\alpha$ -TeO<sub>2</sub> (Paratellurite, P4<sub>1</sub>2<sub>1</sub>2), orthorhombic  $\beta$ -TeO<sub>2</sub> (Tellurite, Pbca), and a metastable phase  $\gamma$ -TeO<sub>2</sub> (P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>).



Fig. S2 (a-c) Natural mineral tellurite of layered  $\beta$ -TeO<sub>2</sub>. Reproduced from https://www.mindat.org/min-3905.html.



**Fig. S3** (a) Projected density of states (PDOS) of Te and O atoms in monolayer TeO<sub>2</sub>. (b) and (c) Isosurfaces of partial charge densities corresponding to the VBM and CBM.



Fig. S4 Isosurfaces of partial charge densities corresponding to the VBM (a) and CBM (b) in monolayer TeO<sub>2</sub>. The isosurface value is  $0.03 \text{ e/Å}^3$ .



Fig. S5 Shifts of CBM (a) and VBM (b) under uniaxial strain along the x and y directions for monolayer  $TeO_2$ . (c) Relations between strain and total energy.



**Fig. S6** Isosurfaces of partial charge densities corresponding to the VBM (a) and CBM (b). The isosurface value is 0.002 e/bohr<sup>3</sup>.

**Table S4** The calculated effective mass (m\*) and mobility ( $\mu$ ) of electrons and holes along  $\Gamma$ -X and  $\Gamma$ -Y directions for monolayer TeO<sub>2</sub> at 300 K.

| Carrier type         | m*   | X    | m* y  | $\mu_{x_{2D}}$ | $(cm^2V^{-1}s^{-1})$ | $\mu_{y\_2D}$ |
|----------------------|------|------|-------|----------------|----------------------|---------------|
| $(cm^2V^{-1}s^{-1})$ |      |      |       |                |                      |               |
| e                    | 2.36 | 0.36 | 790~  | -820           | 1200~210             | 00            |
| $h^+$                | 0.50 | 0.54 | 8400~ | 9100           | 180~250              | )             |