Supporting Information for

Roll-to-Roll Redox-Welding and Embedding for Silver Nanowire Network Electrodes

Yeontae Kim,^{1,†} Yeong Eun Sul,^{2,†} Hyungseok Kang,^{1,†} Yongsuk Choi,¹ Ho Sun Lim⁴ Sungjoo Lee,¹ Lyongsun Pu,³ Gi-Ra Yi,² Sung Min Cho,^{1,2,*} Jeong Ho Cho^{1,2,*}

¹SKKU Advanced Institute of Nanotechnology (SAINT), ²Department of Nano Engineering, ³Research & Business Foundation, Sungkyunkwan University Suwon 440-746, Republic of Korea.
 ⁴Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea.

E-mail: jhcho94@skku.edu and sungmcho@skku.edu

[†]These authors contributed equally this work.

METHODS

Roll-to-roll redox-welding of AgNWs: The AgNW networks (Nanopyxis Co.) were formed by the Meyer rod coating method on plastic substrates (PI and PET) using 0.5 wt% AgNWs dispersed in isopropyl alcohol (PA). The average diameter and length of the AgNWs were 30 nm and 30 μ m, respectively. The deposition densities for the AgNW network were controlled using different Meyer rods (#5, #7, #10, and #14). The as-coated AgNW films were sequentially immersed in the aqueous solution of HNO₃ (0.05 to 5 M) and NaBH₄ (0.005 to 0.05 M) for various times. The surfaces of the AgNW films were visualized by scanning electron microscopy (SEM, JSM-7600F, Jeol Ltd.). The sheet resistance and optical transmittance were measured by a four-point probe technique (Keithley 2182A and 6221) and a UV-vis spectrophotometer (Agilent 8453), respectively. In order to fabricate the single-wire junction of the AgNWs, the AgNW suspensions were diluted and deposited onto the Si wafer. The contact pads were defined by electron-beam lithography and 100-nm-thick Au electrodes were deposited by thermal evaporation. The *I-V* characteristics of both the wire and junction were measured using a Keithley 4200 probe system.

Roll-to roll embedding of AgNWs: A PI film coated with large-area redox-welded AgNWs was placed in a roll-to-roll equipment. A UV-curable prepolymer resin (NOA63, Norland) was then dropped using dispersers onto the AgNWs-PI film moving at a velocity of 1 cm s⁻¹. The bare PET film was laminated onto the UV-resin-coated AgNWs/PI film at a pressure of 0.6 MPa. The laminated film was transferred to a UV-exposure chamber (360 nm, 5000 mJ cm⁻²) to cross-link the resin. The embedded AgNWs/PET film was then separated from the PI film.

Fabrication of OLEDs: Six organic materials required for the blue-emitting fluorescent OLED was deposited *via* a vacuum evaporator: 35-nm-thick 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile as the hole injection layer, 80-nm-thick *N,N'*-bis-(1-naphthyl)-*N,N'*-dipheny-1,1'-biphenyl-4,4'-diamine as the hole transport layer, 20-nm-thick 4,4',4''-Tri(*N*-carbazolyl)triphenylamine as the electron blocking layer, 20-nm-thick 2-methyl-9,10-di(2-naphthyl) anthracene and 5% 1,6-bis(*N*-phenyl-p-CN-phenylamino)-pyrenes (Pyrene-CN) as the host and dopant materials, respectively, for blue fluorescent emission, 40-nm-thick LG201 doped with 50% Liq as the electron transporting layer, and 1.5-nm-thick Liq as an electron injection layer. Finally, a 100-nm-thick aluminum layer was deposited thermally to form the cathode electrode. The emission area was $10 \times 10 \text{ cm}^2$. The optoelectrical properties were measured by a Keithley 236 source meter and a Minlota CS2000 spectroradiometer.

Figure S1. Current-voltage curves of the pristine AgNW junctions.

Figure S2. AFM images of the AgNWs films before and after embedding process.

Figure S3. SEM image of the AgNWs embedded in UV-resin.

Figure S4. Environmental stability of the OLED devices based on the redox-welded AgNWs.

_	contact angle		γ^{d} (mJ/m ²)	$\gamma^p (mJ/m^2)$	$\gamma (mJ/m^2)$
	water	diiodomethane	1 ()	1 ()	, ()
UV-resin	41.0°	48.5°	23.2	33.1	56.3
PET	44.0°	21.7°	35.9	22.9	58.9
PI	49.5°	42.0°	28.0	24.0	52.0

 Table S1. Surface energies of UV-resin, PET, and PI.

$$WA_{12} = 4 \left(\frac{\gamma_1^d \gamma_2^d}{\gamma_1^d + \gamma_2^d} + \frac{\gamma_1^p \gamma_2^p}{\gamma_1^p + \gamma_2^p} \right)$$

WA_{UV-resin/PET} = 110.5 mJ/m²

 $WA_{UV-resin/PI} = 106.4 \text{ mJ/m}^2$