Supporting Information

Mechanistic Insights into the Inhibition and Size effects of Graphene Oxide Nanosheets on the Aggregation of an Amyloid-β Peptide Fragment

Yujie Chen⁺, Zihan Chen⁺, Yunxiang Sun⁺, Jiangtao Lei⁺, and Guanghong Wei^{+,*}

 Department of Physics, State Key Laboratory of Surface physics, Key Laboratory for Computational Physical Science (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200433, People's Republic of China

* Corresponding author: Guanghong Wei, E-mail: ghwei@fudan.edu.cn

This material contains the description of how to set up partial charge of atoms in oxidation groups of GO nanoparticles, five tables and eight figures.

Partial charges setup for atoms in oxidation groups of GO nanoparticles. The partial charges of atoms in oxidation groups of GO (Fig. S1) were taken from similar groups of three residues (TYR, GLU and ASP) and the base of DNA with minor modification. Oxygen atom in epoxy group (-C-O-C-) have a partial charge of -0.4e, which is similar to the charge of O4' atom in deoxyribonucleic acid (-0.37e, more details can be seen in Table S1). Both of the two carbon atoms in epoxy group have a partial charges of 0.2e and the epoxy group is electric neutral. Based on the hydroxyl group of TYR side chain (Table S2), the charges of oxygen and hydrogen atoms in hydroxyl group (-O-H) were set to be -0.55e and 0.35e, respectively. The carbon atom connected with oxygen atom has a partial charges of 0.2e to ensure the hydroxyl group electroneutral. For carboxyl group (-COO⁻), ASP (Table S3) and GLU (Table S4) were introduced as references. The carbon atom has 0.7e and two oxygen atoms have

equal charges of -0.8e. The carbon atom which connects to the carbon atoms of carboxyl groups was set to be -0.1e and the total charge of carboxyl group is -1e to simulate the deprotonated state. Other carbon atoms didn't mentioned above in the GO are uncharged.

Tab	le S1	-S5:
-----	-------	------

dA	MP	01P P - 0 02P	C4' H4' H3' C3'-	4' C1' H2'1 / I H2'1 / H1' - C2' H2'2	nine		
Atom	Charge	Atom	Charge	Atom	Charge		
Р	1.16590	H1'	0.18380	C2	0.57160		
O1P	-0.77610	N9	-0.02680	H2	0.05980		
O2P	-0.77610	C8	0.16070	N3	-0.74170		
05'	-0.49540	H8 0.18770 C4 0.3800					
C5'	-0.00690	N7	-0.61750	C3'	0.07130		
H5'1	0.07540	C5	0.07250	H3'	0.09850		
H5'2	0.07540	C6	0.68970	C2'	-0.08540		
C4'	0.16290	N6	-0.91230	H2'1	0.07180		
H4'	0.11760	H61	0.41670	H2'2	0.07180		
04'	-0.36910	H62 0.41670 O3' -0.52320					
C1'	0.04310	N1	-0.76240				

Table S1. The partial charges of atoms in 2'-Deoxyadenosine 5'-mono-phosphate(dAMP) under the AMBER99SB-ILDN force field.

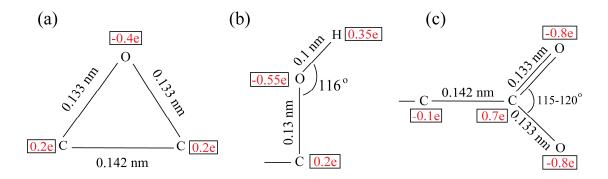
יד	Ϋ́R	C=(CD2—CE2 CZ CD1=CE1	—ОН–НН		
Atom	Charge	Atom Charge Atom Charg					
Ν	-0.41570	CG	-0.00110	нн	0.39920		
н	0.27190	CD1	-0.19060	CE2	-0.23410		
CA	-0.00140	HD1	0.16990	HE2	0.16560		
HA	0.08760	CE1	-0.23410	CD2	-0.19060		
СВ	-0.01520	HE1	0.16560	HD2	0.16990		
HB1	0.02950	CZ	0.32260	С	0.59730		
HB2	0.02950	ОН	-0.55790	0	-0.56790		

Table S2. The partial charges of atoms in Tyrosine (TYR) under the AMBER99SB-ILDN force field.

ASP		C=O HB1 OD1 HA — CA — CB — CG — OD2 N-H HB2					
Atom	Charge	Atom Charge Atom Charge					
N	-0.51630	СВ	-0.03030	OD1	-0.80140		
н	0.29360	HB1	-0.01220	OD2	-0.80140		
СА	0.03810	HB2	-0.01220	С	0.53660		
НА	0.08800	CG 0.79940 O -0.58190					

Table S3. The partial charges of atoms in Aspartate (ASP) under theAMBER99SB-ILDN force field.

GLU		C=O HB1 HG1 OE1 HA — CA — CB — CG — CD — OE2 N-H HB2 HG2					
Atom	Charge	Atom Charge Atom Charge					
Ν	-0.51630	HB1	-0.01730	CD	0.80540		
н	0.29360	HB2	-0.01730	OE1	-0.81880		
СА	0.03970	CG	0.01360	OE2	-0.81880		
HA	0.11050	HG1	-0.04250	С	0.53660		
СВ	0.05600	HG2	-0.04250	0	-0.58190		


Table S4. The partial charges of atoms in Glutamic (GLU) under theAMBER99SB-ILDN force field.

Replicas	Αβ ₃₃₋₄₂	Αβ ₃₃₋₄₂	Αβ ₃₃₋₄₂	Replicas	Αβ ₃₃₋₄₂	Αβ ₃₃₋₄₂	Αβ ₃₃₋₄₂
		+4GO ₆₀	+2GO ₁₂₀			+4GO ₆₀	+2GO ₁₂₀
1	307.00	307.50	307.50	25	368.57	369.97	368.11
2	309.39	309.92	309.86	26	371.34	372.79	370.82
3	311.79	312.36	312.23	27	374.13	375.62	373.55
4	314.20	314.81	314.62	28	376.93	378.47	376.30
5	316.64	317.28	317.02	29	379.75	381.33	379.07
6	319.08	319.76	319.44	30	382.59	384.22	381.83
7	321.55	322.25	321.86	31	385.45	387.12	384.64
8	324.02	324.77	324.31	32	388.26	390.03	387.45
9	326.52	327.29	326.77	33	391.15	392.97	390.28
10	329.03	329.84	329.24	34	394.06	395.93	393.13
11	331.56	332.40	331.72	35	396.99	398.91	395.99
12	334.10	334.98	334.22	36	399.94	401.91	398.88

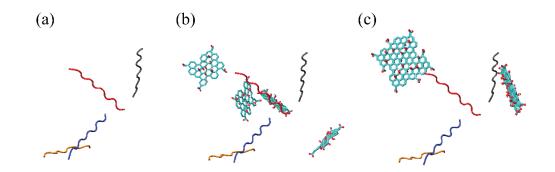
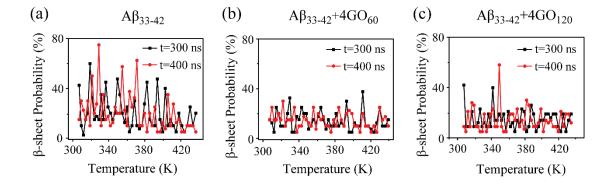
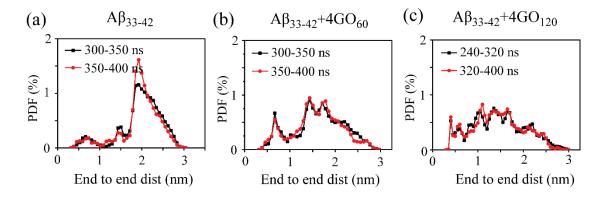
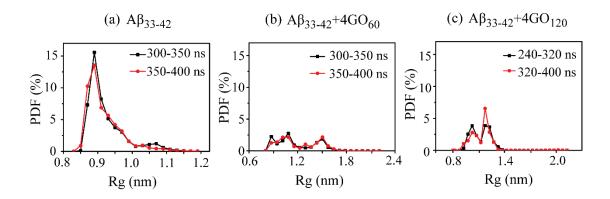
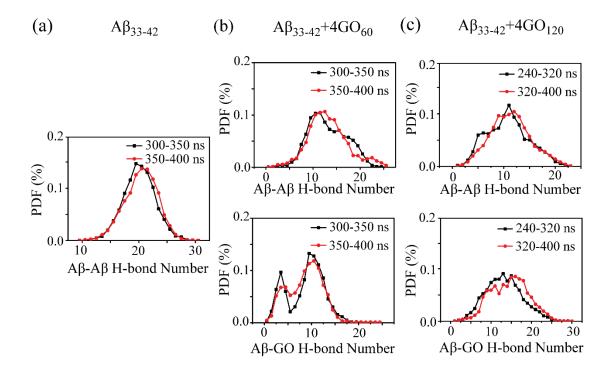

			1		1		
13	336.66	337.57	336.73	37	402.91	404.92	401.78
14	339.23	340.17	339.26	38	405.88	407.96	404.69
15	341.82	342.80	341.81	39	408.88	411.01	407.62
16	344.42	345.44	344.37	40	411.91	414.08	410.57
17	347.04	348.10	346.94	41	414.95	417.17	413.53
18	349.67	350.77	349.53	42	418.01	420.29	416.51
19	352.32	353.46	352.14	43	421.08	423.42	419.52
20	354.99	356.17	354.76	44	424.18	426.57	422.54
21	357.68	358.90	357.40	45	427.31	429.74	425.58
22	360.38	361.64	360.05	46	430.44	432.93	428.64
23	363.09	364.40	362.72	47	433.62	436.14	431.71
24	365.82	367.18	365.41	48	436.79	439.37	434.81

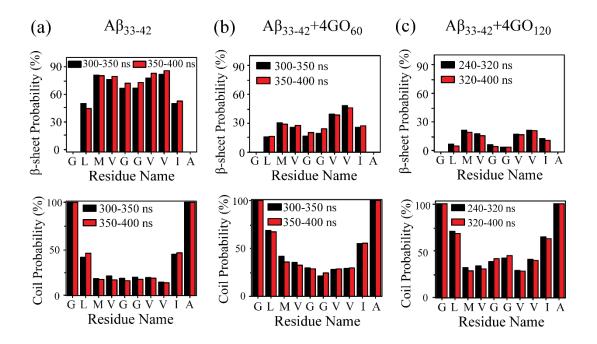
Table S5. Temperature list of 48 replicas in each system (307-436.79 K for $A\beta_{33-42}$ system; 307.5-439.7 K for $A\beta_{33-42}$ +4GO₆₀ system; 307.5-450.59 K for $A\beta_{33-42}$ +2GO₁₂₀ system).


Figure S1-S8:


Figure S1. Illustrations of partial charges of the atoms in (a) epoxy group, (b) hydroxyl group and (c) carboxyl group


Figure S2. The initial states of (a) $A\beta_{33-42}$ system, (b) $A\beta_{33-42}+4GO_{60}$ system and (c) $A\beta_{33-42}+2GO_{120}$ system.


Figure S3. The probability of β -sheet among 48 temperature replicas at 300 ns and 400 ns. (a) A β_{33-42} system, (b) A β_{33-42} +4GO₆₀ system, (c) A β_{33-42} +2GO₁₂₀ system.


Figure S4. The probability density function (PDF) of end-to-end distances of all peptide chains within two time intervals for (a) $A\beta_{33-42}$ system, (b) $A\beta_{33-42}+4GO_{60}$ system, (c) $A\beta_{33-42}+2GO_{120}$ system.

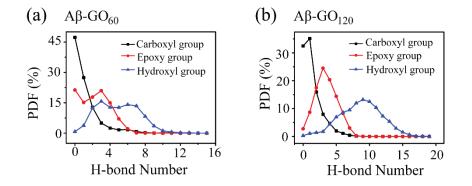

Figure S5. The PDF of the radius of gyration of the A β -tetramer within two time intervals in (a) A β_{33-42} system, (b) A β_{33-42} +4GO₆₀ system, (c) A β_{33-42} +2GO₁₂₀ system.

Figure S6. The PDF of the H-bond number of peptide-peptide and peptide-GO within two time intervals for (a) $A\beta_{33-42}$ system, (b) $A\beta_{33-42}+4GO_{60}$ system, (c) $A\beta_{33-42}+2GO_{120}$ system.

Figure S7. The calculated secondary structure (coil and β -sheet) probability of each residue in the REMD runs for A β -tetramer in three systems within two time intervals for (a) A β_{33-42} system, (b) A β_{33-42} +4GO₆₀ system, (c) A β_{33-42} +2GO₁₂₀ system.

Figure S8. The PDF of H-bond number between A β and different oxidation groups (carboxyl group, epoxy group and hydroxyl group) of GO. (a) A β_{33-42} +4GO₆₀ system. (b) A β_{33-42} +2GO₁₂₀ system.