Supplementary Information

Luminescence and Thermal Behaviors of Free and Trapped Excitons in Cesium Lead Halide Perovskite Nanosheets

Xiangzhou Lao,[†] *Zhi Yang*,[‡] *Zhicheng Su*,[†] *Zilan Wang*,[§] *Honggang Ye*,^{†, \Box} *Minqiang Wang*,[‡] *Xi Yao*,[‡] *and Shijie Xu*^{*†}

[†]Department of Physics, and Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Pokfulam Road, Hong Kong, China

[‡]Electronic Materials Research Laboratory (EMRL), Key Laboratory of Education Ministry; International Center for Dielectric Research (ICDR), Xi'an Jiaotong University, Xi'an 710049, China

[§]Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

^DDepartment of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China

*E-mail: sjxu@hku.hk (S.J.X.)

The temperature-dependent linewidth broadening (solid squares) of the two peaks is plotted in Figure S1 and fitted using the equation^{S1,2}

$$\Gamma(T) = \Gamma_0 + \Gamma_{ac}T + \frac{\Gamma_{op}}{e^{\hbar w_{op}/k_B T} - 1}$$
(1)

in which the first term Γ_0 is the inhomogeneous broadening, while Γ_{ac} and Γ_{op} account for the contributions of exciton-acoustic phonon interaction and exciton-optical phonon, respectively, to the linewidth broadening. It should be noted that Eq. (1) is derived for the temperature-dependent linewidth broadening of luminescence of free excitons.^{S1} As expected, the temperature dependence of luminescence linewidth of free excitons (e.g., Peak 2) can be represented with Eq. (1). The solid line in Figure S1(b) is a fitting curve with Eq. (1) for $\hbar w_{op} = 34.4\pm0.8$ meV. This effective optical phonon energy is comparable to that (e.g., 29±3 meV) of CsPbBr₃ obtained by Cho *et al.*^{S2} For the temperature dependence of luminescence linewidth of trapped excitons in low temperature range of 10-60 K, acoustic phonon scattering may be dominant. We thus use the two former terms on the right hand side of Eq. (1) to make a fit. A fitting curve is depicted in solid linear line in Figure S1(a) for $\Gamma_{0}=67.2\pm4.1$ meV and

 $\Gamma_{ac}=0.8\pm0.1$ meV K⁻¹. Clearly, inhomogeneous broadening due to broad defect state distribution makes a major contribution. These data tend to be consistent with the assignment of Peak 2 to free excitonic luminescence and Peak 1 to trapped excitonic one.

Figure S1 Linewidths vs. temperature for Peak 1 (a) and Peak 2 (b).

References

S1 S. Rudin, T. L. Reinecke, B. Segall, Phys. Rev. B 1990, 42, 11218-11231

S2 H. Cho, C. Wolf, J. S. Kim, H. J. Yun, J. S. Bae, H. Kim, J.-M. Heo, S. Ahn, T.-W. Lee, *Adv. Mater.* 2017, **29**, 1-8.