Supplemental Information

Light-weight 3D Co-N-doping hollow carbon spheres as efficient electrocatalyst

for zinc-air battery

Shengmei Chen^{a,b}, Junye Cheng^{a,b,d}, Longtao Ma^b, Shanke Zhou^c, Xiuwen Xu^b, Chunyi Zhi^b,

Wenjun Zhang ^{a,b}, Linjie Zhi ^{c,*}, J Antonio Zapien ^{a,b,*}

^a Center of Super-Diamond and Advanced Films (COSDAF) City University of Hong Kong, Kowloon,

Hong Kong 999077 and City University of Hong Kong, Shenzhen Research Institute, Shenzhen,

Guangdong, P. R. China

^b Department of Materials and Science Engineering, City University of Hong Kong, Kowloon, Hong

Kong 999077

^c CAS Center of Excellence for Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China

^d Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of

Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China

E-mail addresses: apjazs@cityu.edu.hk (J. A. Zapien), zhilj@nanoctr.cn (L.J. Zhi).

Fig. S1 (a) SEM image of 0.05-Co-NHCs; (b) SEM image of 0.15-Co-NHCs.

Fig. S2 High-resolution XPS N 1s (a, c) and Co 2p (b, d) of 0.05-Co-NHCs and 0.15-Co-NHCs.

Fig. S3 The A.C impedance plots of catalysts NHCs, 0.05-Co-NHCs, 0.1-Co-NHCs and 0.15-Co-NHCs.

Fig. S4 CV curves in the region of 0.1-0.2 V at scan rate from 2 to 10 mVs⁻¹ and corresponding liner fitting capacitive current vs. scan rates to estimate the C_{dl} : 7.01 mF cm⁻² for NHCs (a, b), 12.00 mF cm⁻² for 0.05-Co-NHCs (c, d), 22.28 mF cm⁻² for 0.1-Co-NHCs (e, f) and 14.22 mF cm⁻² for 0.15-Co-NHCs (g, h).

Fig. S5 (a, d, g, j) CV curves of different catalysts recorded at 100 mV s⁻¹ in N₂ and O₂ saturated 0.1 M KOH solution; (b, e, h, k) LSV curves of different catalysts at different rotation speeds; (c, f, i, l) K-L plots of different catalysts at different potentials with corresponding electron transfer number.

Fig. S6 (a, d, g, j) CV curves of different catalysts recorded at 100 mV s⁻¹ in N₂ and O₂ saturated 0.1 M KOH solution; (b, e, h, k) LSV curves of different catalysts at different rotation speeds; (c, f, i, l) K-L plots of different catalysts at different potentials with corresponding electron transfer number.

Fig. S7 (a) CV curves of commercial Pt-C catalyst recorded at 100 mV s⁻¹ in N₂ and O₂ saturated 0.1 M KOH solution; (b) LSV curves of commercial Pt-C catalyst at different rotation speeds; (c) K-L plots of commercial Pt-C catalyst at different potentials with corresponding electron transfer number.

Fig. S8 Digital image of assembled zinc-air battery using 0.1-Co-NHCs as catalyst to display open-circuit voltage and different color LED powered by two of the assembled zinc-air batteries in series.

			% N					
	% C	% 0	% Co	N total	Pyri-N	Co-N	Qua-N	Oxi-N
NHCs	91.23	4.07	0.00	4.68	24.59	0.00	73.79	1.62
0.05Co-NHCs	85.77	12.30	0.13	1.69	8.07	16.57	61.02	14.34
0.1 Co-NHCs	89.00	8.52	0.29	2.19	9.65	32.71	39.87	17.76
0.15Co-NHCs	91.05	6.51	0.39	2.26	14.24	18.20	57.71	9.85

Table S1 Ratio analysis of the peaks in XPS spectrum in NHCs and Co based NHCs catalysts

Table S2 Comparison of the ORR performance between 0.1-Co-NHCs catalyst, commercial Pt-C and other reported catalysts in 0.1 M KOH electrolyte

Electrocatalyst	Onset	Half-wave	Loading mass	Reference
	potential	potential	$(ug cm^{-2})$	
	(V vs.	(V vs. RHE)		
	RHE)			
0.1-Co-NHCs	0.99	0.81	217	This work
Pt-C	1.02	0.83	140	This work
Fe-N/C-800	0.923	0.809	100	J. Am. Chem. Soc.,
				2014, 136, 11027.
N-doped carbon cubes	0.92	0.80	400	Nanoscale,
				2017, 9, 1059.
CoO@Co/N-rGO	0.95	0.81	-	J. Mater. Chem. A,
				2017,5,5865
N, S-doped	0.92	0.77	200	Nano Energy,
Graphene sheets				2016, 19, 373
NCNT/CoO-NiO-NiCo	0.97	0.83	210	Angew.Chem. Int.Ed.
				2015, 54,9654
Fe-N-Doped Carbon	0.94	0.83	100	ACS Nano,
Capsules				2016, 10,5922
CF-NG-Co	0.97	0.85	140	J. Mater. Chem. A,
				2018,6,489
N-CG–CoO	0.90	0.81	700	Energ Environ Sci
				2014, 7, 609

Table S3 Comparison of the zin - air batteries performance between using 0.1-Co-NHCs catalyst, commercial Pt-C and other reported catalysts

Electrocatalyst	Loading mass (g·cm ⁻²)	Power density (mW·cm ⁻²)	Round-trip Efficiency	Stability	Reference
0.1-Co-NHCs	1	239.8	60.6%	11 min per cycle for 300 cycles; voltage gap increased ~0.1V	This work
Pt-C	1	156	59.8%	11 min per cycle for 300 cycles; voltage gap increased ~0.4V	This work
N-doped graphene	0.5	65	60%	60 min per cycle for 150 cycles; voltage gap increased ~0.2 V	Sci. Adv. 2016,2:e1501122.
FeCo-N-doped CNT	2	89.3	32.3%	10 min per cycle for 240 cycles; voltage gap increased ~0.03 V	Adv. Energy Mater. 2017, 1602420.
Co ₃ O ₄ -NCNT/SS	-	160.7	61%	20 min per cycle for 1500 cycles; voltage gap increased ~0.16 V	Adv. Mater. 2016, 28, 6421.
N, P-doped mesoporous carbon	0.5	55	59%	10 min per cycle for 180 cycles; voltage gap increased ~0.7 V	Nature Nanotech. 2015, 10, 444.
Atomically dispersed Fe-N	1.25	102.7	57%	After 100cycles; voltage gap increased ~0.2 V	Angew. Chem. Int. Ed. 2017, 56, 610.
Co ₃ O ₄ /NPGC	0.9	-	58.9%	After 85 hours; voltage gap increased ~0.05V	Angew.Chem .Int. Ed. 2016, 55, 4977
Co ₄ N/CNW/CC	-	174	61%	20 min per cycle for 408 cycles; voltage gap increased ~0.01 V	J. Am. Chem. Soc. 2016, 138, 10226.
N/S hierarchically porous carbon	1	151	61%	11 min per cycle for 300 cycles; voltage gap increased ~0.085V	Energy Environ. Sci., 2017, 10, 742