Supporting Information

Partner-facilitating transmembrane penetration of nanoparticles: a biological test in Silico

Wenbin Wang,^{a, b} Ran Yang,^{a, b} Fei Zhang, ^{a, b} Bing Yuan, ^{*a, b} Kai Yang ^{*a, b} and Yuqiang Ma^{c, a, b}

^a Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China. Email: <u>yuanbing@suda.edu.cn</u> (B.Y.), <u>yangkai@suda.edu.cn</u> (K.Y.)

^b College of Physics, Optoelectronics and Energy, Soochow University, Suzhou,
215006, China

 ^c National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, P. R. China

Figure S1. Representative translocation processes of the NPs into/across the lipid membranes. (A) WNP. It stays on the membrane surface at the end of the simulation; (B) ONP. It traps in the membrane at the end of the simulation; (C) JNP. It traps in the membrane at the end of the simulation; (D) RNP. It successfully translocates across the

membrane during the simulation. In all cases,
$$F_s = 30 \frac{k_B T}{r_c} D_0 = 3 r_c$$
.

A : ONP (host) + JNP (partner)

Figure S2. (A) Representative translocation process of a *host* ONP across a membrane with the help of a *partner* JNP. $F_s = 30 \frac{k_B T}{r_c} D_0 = 3 r_c$ (B) Different components of NP-membrane forces and the inter-NP distance *D* in the translocation process. From left to right, figures correspond to x, y, and z components of the force and the final one is the evolution of *D*.

Figure S3. Representative translocation process of a WNP+JNP group across a membrane with varying initial separation $D_{0.}$ (A) $D_{0=5} r_{c,}$ (B) $D_{0=8} r_{c,}$ and (C) $D_{0=12}$

$$r_{c}F_{s} = 35 \frac{k_{B}T}{r_{c}}$$

Figure S4. Representative translocation process of a *host* WNP across a membrane

with the help of a partner RNP under the different driving forces. For the WNP,

$$F_s = 35 \frac{k_B T}{r_c}$$
; For the RNP, $F_s = 30 \frac{k_B T}{r_c} D_0 = 3 r_c$.

Figure S5. Transmembrane penetrability of a *host* WNP with the help of a *partner* JNP under the varying inter-NP affinity a_{pp} . In all cases here, $D_0 = 3 r_c$.

Figure S6. Representative translocation process of a *host* WNP across a membrane with the help of two *partner* JNPs. The arrows indicate the rotation of the JNP.

$$F_s = 30 \frac{k_B T}{r_c} D_0 = 3 r_c$$

Figure S7. Transmembrane penetrability of one single NP with varying shape and the location of acting point of the driving force. In all cases, $D_0 = 3 r_c$.

	F		Transm	nsmembrane penetrability (<i>n/m</i>)*					
Host NP	k_BT		+ Partner NP						
	(r_c)	Alone	+ WNP	+ ONP	+ JNP	+ RNP	Total		
	25	0/3	0/3	0/3	0/3	0/3	0/12		
WNP	30	0/3	0/3	0/3	1/3	0/3	1/12		
	35	0/3	1/3	0/3	3/3	2/3	6/12		
	25	0/3	0/3	3/3	0/3	2/3	5/12		
ONP	30	0/3	0/3	3/3	2/3	3/3	8/12		
	35	1/3	0/3	3/3	3/3	3/3	9/12		
	25	0/3	0/3	0/3	0/3	2/3	2/12		
JNP	30	0/3	1/3	2/3	2/3	0/3	5/12		
	35	0/3	3/3	3/3	3/3	0/3	9/12		
RNP	25	0/3	2/3	2/3	3/3	3/3	10/12		
	30	3/3	3/3	3/3	3/3	3/3	12/12		
	35	3/3	3/3	3/3	3/3	3/3	12/12		

Table S1 Transmembrane penetrability of a NP (WNP, ONP, JNP or RNP) without or with a NP partner. $D_0 = 3 r_c$.

*Note: for n/m in the table, m stands for the total number of independent simulation events under a certain condition, while n refers to the successful times of transmembrane penetration of the *host* NP.

under $a_{pp} = 1^{k_p}$	${}_{B}^{T}/r_{c} D_{0} = 3 \pi$	°с.							
Host NP	Fs	Transmembrane penetrability							
	$(K_{\rm B} 1/1_{\rm c})$		+ partner NP						
	25 30	+ WNP	+ ONP	+ JNP	+ RNP	Total			
		0/3	0/3	1/3	0/3	1/12			
NAD		+ WNP	+ ONP	+ JNP	+ RNP	Total			
WNP		0/3	0/3	2/3	0/3	2/12			
	25	+ WNP	+ ONP	+ JNP	+ RNP	Total			
	35	1/3	0/3	3/3	2/3	6/12			

Table S2. Transmembrane penetrability of a *host* WNP with the help of a *partner* JNP

Host NP	Fs	Transmembrane penetrability						
	$(K_{\rm B} I/I_{\rm c})$		+ Two partner NPs					
2	25	+ (WNP-WNP)	+ (ONP-ONP)	+ (JNP-JNP)	+ (RNP-RNP)	Total		
	25	0/3	0/3	2/3	1/3	3/12		
WAD	30	+ (WNP-WNP)	+ (ONP-ONP)	+ (JNP-JNP)	+ (RNP-RNP)	Total		
WNP		0/3	3/3	2/3	1/3	6/12		
	25	+ (WNP-WNP)	+ (ONP-ONP)	+ (JNP-JNP)	+ (RNP-RNP)	Total		
	33	3/3	3/3	3/3	2/3	11/12		

Table S3. Transmembrane penetrability of a *host* WNP with two *partner* NPs. $D_0 = 3 r_{c_1}$

Table S4. Transmembrane penetration statistics of one single ellipsoidal NP with varying locations of acting point of the driving forces. $D_0 = 3 r_c$.

NP Type	Fs	Transmembrane penetrability		
	$(\mathbf{K}_{\mathrm{B}}1/\mathbf{I}_{\mathrm{c}})$	ellipsoid (center)	ellipsoid (tip)	
	25	0/3	0/3	
WNP	30	0/3	0/3	
	35	0/3	0/3	
ONP	25	0/3	0/3	
	30	3/3	3/3	
	35	3/3	3/3	
	25	0/3	2/3	
JNP	30	0/3	2/3	
	35	2/3	3/3	
RNP	25	3/3	3/3	
	30	3/3	3/3	
	35	3/3	3/3	

Table S5. Transmembrane penetrability of a *host* ellipsoidal WNP with a *partner* ellipsoidal NP (the driving forces act at the NP centers). $D_0 = 3 r_c$.

<i>Host</i> NP	Fs	Transmembrane penetrability						
	$(K_{\rm B} 1/T_{\rm c})$	+ <i>partner</i> NP (ellipsoidal)						
WNP (ellipsoidal)	25	+ WNP	+ ONP	+ JNP	+ RNP	Total		
		0/3	0/3	0/3	0/3	0/12		
	30	+ WNP	+ ONP	+ JNP	+ RNP	Total		
		0/3	0/3	0/3	0/3	0/12		
	25	+ WNP	+ ONP	+ JNP	+ RNP	Total		
	35	0/3	3/3	3/3	0/3	6/12		

Table S6. Transmembrane penetrability of a *host* ellipsoidal WNP with a *partner* ellipsoidal NP (the driving forces act at the NP tips). $D_0 = 3 r_c$.

Host NP	Fs	Transmembrane penetrability						
	$(K_{\rm B} 1/I_{\rm c})$	+ partner NP (ellipsoidal)						
	25	+ WNP	+ ONP	+ JNP	+ RNP	Total		
		0/3	0/3	0/3	0/3	0/12		
WNP	30	+ WNP	+ ONP	+ JNP	+ RNP	Total		
(ellipsoidal)		0/3	0/3	0/3	0/3	0/12		
	35	+ WNP	+ ONP	+ JNP	+ RNP	Total		
		1/3	0/3	2/3	0/3	3/12		

Table S7. Transmembrane penetrability of a *host* spherical WNP with a *partner* prolate NP (the driving forces act at the NP centers). $D_0 = 3 r_c$.

Host NP	Fs (k _B T/r _c)	Transmembrane penetrability					
			+ partner NP (ellipsoidal)				
WNP (spherical)	25	+ WNP	+ ONP	+ JNP	+ RNP	Total	
		0/3	0/3	0/3	0/3	0/12	
	30	+ WNP	+ ONP	+ JNP	+ RNP	Total	
		1/3	0/3	0/3	0/3	1/12	
	25	+ WNP	+ ONP	+ JNP	+ RNP	Total	
	35	0/3	3/3	3/3	0/3	6/12	

Host NP	Fs	Transmembrane penetrability					
	$(K_{\rm B} 1/I_{\rm c})$	+ $Partner$ NP (ellipsoidal)					
WNP (spherical)	25	+ WNP	+ ONP	+ JNP	+ RNP	Total	
		0/3	0/3	0/3	0/3	0/12	
	30	+ WNP	+ ONP	+ JNP	+ RNP	Total	
		0/3	0/3	0/3	1/3	1/12	
	25	+ WNP	+ ONP	+ JNP	+ RNP	Total	
	35	1/3	3/3	3/3	0/3	7/12	

Table S8. Transmembrane penetrability of a *host* spherical WNP with a *partner* tiltprolate NP (tilt angle: 45° , the driving forces act at the NP centers). $D_0 = 3 r_c$.

oblate NP (the driving forces act at the NP centers) . $D_0 = 3 r_c$.Host NPFs
(k_BT/r_c)Transmembrane penetrability
+ Partner NP (ellipsoidal)250/30/30/30/3

Table S9. Transmembrane penetrability of a *host* spherical WNP with a *partner* oblate NP (the driving forces act at the NP centers) $D_0 = 3 r_c$

WNP (spherical)	25	0/3	0/3	0/3	0/3
	30	+ WNP	+ ONP	+ JNP	+ RNP
		0/3	0/3	0/3	0/3
		+ WNP	+ ONP	+ JNP	+ RNP
	55				

2/3

2/3

0/3

Total

0/12

Total

4/12

0/3

Table S10. Transmembrane penetrability of a *host* spherical WNP (the driving forces act at the center) with a *partner* prolate NP (the driving forces act at the tip). $D_0 = 3 r_{c.}$

Host NP	Fs	Transmembrane penetrability						
	$(\kappa_{\rm B} 1/1_{\rm c})$		+ partner NP (ellipsoidal)					
WNP (spherical)	25	+ WNP	+ ONP	+ JNP	+ RNP	Total		
		0/3	0/3	0/3	0/3	0/12		
	30	+ WNP	+ ONP	+ JNP	+ RNP	Total		
		0/3	0/3	0/3	0/3	0/12		
	35	+ WNP	+ ONP	+ JNP	+ RNP	Total		
		0/3	0/3	0/3	0/3	0/12		