Supporting information for

An ammonia detecting mechanism of organic transistors revealed from recovery

processes

Xu Zhou, Kaifeng Niu, Zi Wang, Lizhen Huang* and Lifeng Chi*

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory

for Carbon-Based Functional Materials & Devices, Joint International Research

Laboratory of Carbon-Based Functional Materials and Devices, Soochow University

199 Ren'ai Road, Suzhou, 215123, China.

E-mail: lzhuang@suda.edu.cn; chilf@suda.edu.cn;

S1: Transfer curves of The DTBDT-C₉ thin film transistor in different atmospheres

Figure S1. a) The transfer curves of DTBDT-C₉ transistors under exposure of the circle of $NH_3-N_2-NH_3-Air-NH_3-O_2$ -Air as a function of time; b) The transfer curves of DTBDT-C₉ transistors under exposure of the circle of NH_3 -Air (RH 30%) -NH₃-Air (RH 60%)-NH₃-Air (RH 0%) as a function of time.

Figure S2. The transfer curves of a DTBDT-C₉ FET sensor upon exposure to $O_2(RH0\%)$ as a function of time.

S2: Evolution of the transistor performance response to NH_3 and recovery in dry CO_2 and wet CO_2

Figure S3. The transfer curves of transistor a) response to NH_3 atmosphere, b) recovery in dry CO_2 , c) response to NH_3 atmosphere, d) recovery in wet CO_2 .

Figure S4. The transistor parameters evolution in the response and recovery process. a) response to NH_3 and then recovery in dry CO_2 , b) response to NH_3 and then recovery in wet CO_2 . The dark line in the figure marked the time that transferred the

atmosphere.

S3: Transfer curves of The DTBDT- C_9 thin film transistor on OTS modified substrates.

Figure S5. The transfer curves of a OTS modified DTBDT-C₉ FET sensor under exposure of the circle of $NH_3(50ppm)$ - air(RH30%) as a function of time.

S4. DFT calculation

Calculation method and details: VASP code, GGA-PBE pseudopotential, vdW-D3 method, energy cutoff 400eV, change of total free energy 0.01 eV, 20 Å vacuum layer, $1 \times 1 \times 1$ k-mesh for geometry optimization, $3 \times 3 \times 1$ k-mesh for electronic property calculations.

Table	S1 .
-------	-------------

Configuration	Adsorption Energy/eV	
Gas species	NH ₃	H ₂ O
A: center of thiophene	-0.16	-0.21
B: center of benzene	-0.15	-0.21
C: side to C-H bond	-0.18	-0.19

Figure S6. The three absorption configuration of the NH_3 molecule on the DTBDT-C₉ molecules.

Figure S7. The charge density differences of the gas molecule absorbed on the DTBDT-C₉ molecules. a) H_2O , b) NH_3 , c) O_2 , d) NH_3 on DTBDT-C₉ pre-absorbed H_2O , e) H_2O on DTBDT-C₉ pre-absorbed NH_3