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Figure S1. Bandgap analysis of the -MoO3 nanobelts. UV-visible diffuse absorbance 

spectra of the -MoO3 nanobelts. The bandgap of the -MoO3 nanobelts can be estimated by 

the UV-visible adsorption results,[1] which shows that the bandgap value is about 3.1 eV. It 

demonstrates the semiconductor properties of -MoO3 nanobelts with high resistivity, and it 

is possible to be engineered by the Coulomb explosion.

Figure S2. Nanopattern tailored on the -MoO3 NB by EBI. (a) Representative TEM 

image of an ultrathin -MoO3 NB; (b) TEM image of three gaps tailored on the NB with 100 

nm lateral size. 



Figure S3. Thickness and chemical analysis of the peeled-off -MoO3. (a) EELS low loss 

spectra of the peeled-off layers, which thickness can be calculated from the ratio of zero-loss 

peak and plasmonic peak; (b) EELS core loss spectra of the peeled-off layeres recorded with 

a energy dispersion of 0.25 eV/pixel to highlight the peak position and shape of the Mo-M4,5, 

Mo-M2,3 and O-K edges; The energy-loss near-edge structures (ELNES) of the Mo-M2,3 

edges (c) and O-K edges (d). 

Thickness and chemical analysis of the peeled-off -MoO3 

Thickness calculation. The thickness of TEM specimen (e.g., the thickness of the peeled-off 

layer, t) can be calculated by a straightforward integration of the EELS low loss spectrum. 

The local thickness t calculation based on the log-ratio formula is expressed as:[2] 

                                 (1)0ln( / )tt I I

where, It and I0 are the total and zero-loss areas in the low-loss region of EELS spectrum, 

respectively.  is the total inelastic mean free path, which can be formulated as:

                            (2)0 0106 ( / ) / ln(2 / )m mF E E E E 

It is noted that , E0 is the incident energy of electron beam,  is 2
0 0(1 /1022) / (1 / 511)F E E  



the spectrum collection semi-angle,  and Z is the atomic number. According to the 0.367.6mE Z

above equations and the collected parameters from the EELS spectrum in Figure S3a, the 

thickness of the peeled-off -MoO3 structure can be calculated to be about 2.1 nm, well 

matching a mono-layer thickness of -MoO3.

Table S1. Comparison of Mo-M3 edge, the peak difference (i.e., M3---M2) between the Mo-

M3 edge and the Mo-M2 edge, and the peak difference (Mo-M3---O-K) between the Mo-M3 

edge and the O-K edge with the references of stoichiometric MoO3 and MoO2.

Chemical compositions Mo-M3 (eV) M3---M2 (eV) Mo-M3---O-K (eV)

Peeled-off MoOx  397.5 16.6 131.8

MoO3
[4] 397.8 16.8 131.6

MoO2
[4] 397.7 16.5 132.2

Chemical composition analysis. The chemical compositions of the molybdenum oxides can 

be determined from the analysis of O-K and Mo-M edges of EELS spectra.[3] Figure S3b 

shows the EELS core-loss spectrum collected from the peeled-off materials, in which the 

peak positions and shapes of the Mo-M4,5, Mo-M2,3 and O-K edges demonstrating the 

chemical composition of the molybdenum oxide. Herein, we select the Mo-M2,3 edge to 

quantify the element and valence because it is shaper than the Mo-M4,5 edge and closer to the 

O-K edge. The ELNES spectrum of the Mo-M2,3 edge in Figure S3c shows two peaks at 

397.5 eV and 414.1 eV, corresponding to the M3, M2 edges of Mo element, respectively. The 

energy difference between the Mo-M3 edge and Mo-M2 edge is the criteria to judge the 

oxidation state of Mo element, which is calculated to be 16.6 eV. Besides, the peak difference 

between the Mo-M3 edge and the O-K edge (peak at 529.3 eV in Figure S3d) is another 

criteria, which is 131.8 eV. It is clear to find that the peeled-off layer is a sub-stoichiometric 

molybdenum oxide (i.e. MoOx, 2<x<3) with low oxygen vacancy concentration based on the 

references of stoichiometric MoO3 and MoO2 in Table S1[4]. Thus, this result proves that the 

oxygen can be knocked from the -MoO3 NB by electron beam but with a low vacancy 

concentration. 
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