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Figure S1. LDOS maps for stacked (a) and staggered (b) homojunction from DFT-NEGF 

calculations. The dashed line shows bilayer region (~ 3 nm) and the potential well induced by the 

valence band offset. The density of states increase from the blue to red as labeled in the right side.
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Figure S2. The maximum and minimum transmission coefficients from (a) symmetric and (b) 

asymmetric QW models, respectively. 
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Details of the quantum well model.

We first consider the symmetric potential well. For the finite square well as shown in Figure 4a,
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where V0 is the potential well depth, and LBL is the bilayer region length (potential well length). 

Here, we only consider the scattering states (with E > 0). We can write the Schrödinger equation 

says: , where . The general solution 
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Then, the transmission coefficient is obtained by considered the boundary conditions:
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Next, we consider the asymmetric case as shown in Figure 4b. The potential can be 

expressed as
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Similar with that in symmetric one, we can obtain the Schrodinger equations and get the general 

solutions as follows:
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The total transmission coefficient can be obtained then:
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