Electronic Supplementary Information:

Revealing Principal Attributes of Protein Adsorption on Block Copolymer Surfaces with Direct Experimental Evidence at the Single Protein Level

Tian Xie[†], Joyjit Chattoraj^{‡,§}, Patrick J. Mulcahey[†], Noah P. Kelleher[†], Emanuela Del Gado[‡], and Jong-in Hahm^{†,*}

[†]Department of Chemistry and [‡] Department of Physics, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA

[§] Present Address: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371

*Address Correspondence to jh583@georgetown.edu

Figure S1. 1.5 x 1.5 μ m² AFM topography panels showing the different amounts of Fg adsorbed on homopolymer PS when the polymer surface was (A) used as is without any treatment and (B) treated with Mg²⁺ using 10 mM MgCl₂ solution. The protein deposition conditions of 0.3 μ g/mL Fg in PBS for 15 min were kept identical on the two surfaces. As observed in the representative AFM panels, the Mg²⁺-modified polymer surface resulted in an approximately 1.5-fold higher density of Fg molecules relative to the untreated surface. The protein with a net negative charge on its surface at pH 7.4 is attracted to the divalent cation-treated polymer surface more strongly than to the untreated counterpart.