Supporting Information

Hierarchical SnS_2/SnO_2 nanoheterojunctions with increased active-site and charge transfer for ultrasensitive NO_2 detection

Juanyuan Hao, *^{a,b} Dan Zhang,^c Quan Sun,^a Shengliang Zheng,^a Jianyong Sun, ^a and You Wang *^{a,b}

a. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
Email: jyhao@hit.edu.cn; y-wang@hit.edu.cn

b. Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, P. R. China

c. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

Fig. S1. Schematic diagram of the sensor measurement.

Fig. S2. SEM images of (a) pristine SnS_2 , (b) SnS_2 - SnO_2 -0.5h, (c) SnS_2 - SnO_2 -1h, (d) SnS_2 - SnO_2 -2h, and (e) pure SnO_2 .

Fig. S3. TEM images of pristine SnS_2 with low magnification (a) and high magnification (b), (c) SnS_2 - SnO_2 -0.5h, (d) SnS_2 - SnO_2 -1h, (e) SnS_2 - SnO_2 -2h, and (f) SnO_2 .

Table S1. EDS elemental analysis of pure SnS_2 , pure SnO_2 , and SnS_2 with different oxidation time.

Sample	0	Sn	S	S/Sn
pure SnS ₂	0	36.14	63.86	1.77
SnS_2 - SnO_2 -0.5h	63.17	16.22	20.62	1.27
SnS ₂ -SnO ₂ -1h	63.17	17.63	19.20	1.09
SnS_2 - SnO_2 - $2h$	76.48	13.15	10.36	0.79
Pure SnO ₂	87.70	11.76	0.65	0.06

Table S2. The response and recovery time of the sensors based on pure SnS_2 , pure SnO_2 , and SnS_2/SnO_2 with different oxidation time toward 1 ppm NO₂ at operating temperature of 100 °C.

Sample	Response time (s)	Recovery time (s)
pure SnS ₂	148	90.4
SnS_2 - SnO_2 -0.5h	281	98.2
SnS ₂ -SnO ₂ -1h	299	143
SnS ₂ -SnO ₂ -2h	408	110
SnO ₂	301	561

Table S3. The response and recovery time of the sensors based on SnS_2-SnO_2-1h with different operating temperature toward 1 ppm NO₂.

Operating temperature (°C)	Response time (s)	Recovery time (s)
80	354	205
100	299	143
120	228	134
140	113	108

Fig. S4. Cross-sectional-view SEM images of SnS₂-SnO₂-1h sensor with different thickness: (a) ~12 μ m, (b) ~9 μ m, (c) ~6 μ m, and their sensing response curves toward 1 ppm NO₂ at operating temperature of 100 °C (d).

Fig. S5. I–V curves of the pure SnS_2 , pure SnO_2 , and SnS_2/SnO_2 with different oxidation time at 100 °C.

Fig. S6. N_2 adsorption-desorption isotherms of (a) pure SnS_2 and (b) SnS_2 -SnO₂-1h samples.

Fig. S7. Schematic illustration of gas diffusion on flat (a) and hierarchical (b) sensing materials.

Fig. S8. Response curves of the sensors based on flower-like hierarchical SnS₂-SnO₂-1h and flat SnS₂-SnO₂-1h nanosheets towards 1 ppm NO₂ at operating temperature of 100 °C.

Section S1. Flat SnS₂-SnO₂-1h material synthesis and characterization.

The flat SnS₂-SnO₂-1h nanosheets were synthesized by partial oxidized flat SnS₂ nanosheets. First, the flat SnS₂ nanosheets were prepared according to the methods reported previously.¹ Typically, 0.6 mmol of sodium dodecyl benzenesulfonate (SDBS), 0.25 mmol of SnCl₄·5H₂O, and 2 mmol of L-cysteine were dissolved in 30 mL of deionized water under magnetic stirring. After 20 minutes, the mixture was then transferred into a 50 mL Teflon-lined stainless-steel autoclave and heated at 160 °C for 10 h. The obtained products were washed with ethanol and water for three times, respectively, and dried in vacuum oven overnight for further preparation. The XRD result was shown in Fig. S9a. The SnS₂ nanosheets were further oxidized by putting in a porcelain boat kept at 300 °C for 1 h in an air environment. The SEM images of the sensor based on flat SnS₂-SnO₂-1h nanosheets were shown in Fig. S9b & c.

Fig. S9. (a) XRD of flat SnS_2 nanosheets, and SEM images of the flat SnS_2 -SnO₂-1h nanosheets: (a) top view; (b) cross section view.

Reference

1. X. C. Jiao, X. D. Li, X. Y. Jin, Y. F. Sun, J. Q. Xu, L. Liang, H. X. Ju, J. F. Zhu, Y. Pan, W. S. Yan, Y. Lin and Y. Xie, *J. Am. Chem. Soc.* 2018, **139**, 18044-18051.