Supporting Information for

Direct observation of dynamical magnetization reversal process governed by shape anisotropy in single NiFe₂O₄ nanowire

Junli Zhang,^{‡a,c} Shimeng Zhu,^{‡a}, Hongli Li,^a Liu Zhu,^a Yang Hu,^a Weixing Xia,^b Xixiang Zhang,^c Yong Peng^{*a} and Jiecai Fu^{*a}

^aKey Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China

^bKey Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China ^cDivision of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 239955, Kingdom of Saudi Arabia.

*Corresponding authors

E-mail: pengy@lzu.edu.cn (Yong Peng) and fujc@lzu.edu.cn (Jiecai Fu)

‡These authors contributed equally to this work.

Crystalline structure and chemical analysis of NiFe₂O₄ single-particle-chain nanowire

Figure S1. (a) The TEM image of NiFe₂O₄ NWs; (b) The corresponding SAED.

Figure S2. Polyhedral model of cubic spinel nickel ferrite, showing a face-centered cubic network of O^{2-} anions with Ni²⁺ and Fe³⁺ cations occupying two interstitial sites. Half of Fe³⁺ cations occupies tetrahedral-A sites marked by cyan. The other half of Fe³⁺ and Ni²⁺ cation randomly occupy octahedral B sites marked by pink.

Figure S3. The corresponding FFT for experimental high angle angular dark field-scanning transmission electron microscopy (HAADF-STEM) images in Figure 1.

Figure S4. The EDX spectrum acquired from the area in Figure S1a.

Magnetic properties of NiFe₂O₄ nanowire.

Figure S5. Hysteresis loop of the NiFe₂O₄ NWs.

Detail of the magnetization reversal mechanism

Coherent rotation diameter D ($D_{coh}=3.655l_{ex}$ for one-dimensional magnetic materials) is regarded as criteria to judge which magnetization reversal mechanism may occur in magnetic materials. When the diameter D of NW is smaller than D_{coh} , coherent rotation occurs. Conversely, curling (incoherent) rotation happens when R is larger than D_{coh} . l_{ex} is exchange length, given by:

$$l_{ex} = \sqrt{\frac{A}{\mu_0 M_s^2}} \tag{1}$$

where, A is exchange constant, 1.15×10^{-6} erg·cm⁻¹ for NiFe₂O₄, μ_0 is permeability of free space, $4\pi \times 10^{-7}$ N/A², and M_s is the saturated magnetization, 270 emu/cm³ for our samples. D_{coh} of NiFe₂O₄ NW is 81.8 nm, a little small than the diameter (91nm) of NW in Figure 3. Therefore, the magnetization reversal mechanism of this NiFe₂O₄ NW is curling rotation mode, consistent with above observed results.