Nanoscale

ARTICLE (Supporting information)

Manipulating the distribution of electric field intensity to effectively enhance the spatial and spectral fluorescence intensity of fluorescent nanodiamonds

Shan-Jen Kuo^a, Pei-Chang Tsai^b, Yang-Chun Lee^a, Sih-Wei Chang^a, Shingo Sotoma^b, Chia-Yi Fang^b, Huan-Cheng Chang^{b,c,d}, and Hsuen-Li Chen^{a,e,*}

 Additional discussions about the enhanced effect of Al/SiO₂ nanocavity system for the fluorescence intensity of FNDs.

Thank you very much for your precious comments.

According to our previous study ¹, the relationship between the optical admittance and the amplitude of surface electric-field ($E_{surface}$) can be obtained through the transfer matrix method.¹ The following equation S1 can express the surface electrical field ($E_{surface}$) on the of nanocavity:

$$E_{surface} = \sqrt{\frac{4}{(\alpha+1)^2 + \beta^2}}$$
(S1)

where α and β are the real and imaginary parts of the optical admittance of the thin-film assembly. Therefore, the maximum $E_{surface}$ could be up to 2 when both α and β approached zero. In our previous

ARTICLE (Supporting Information)

study, through well controlled the thickness of the dielectric SiO_2 film, the maximum $E_{surface}$ on the surface of two dimensional (2D) materials can be enhanced.²

In this study, we used the concept to design an Al/SiO₂ nanocavity and systematic interrogated the $E_{surface}$ effect of the nanocavity for the FNDs by both thin-film interference and 3D-FDTD methods. The spherical shape of FNDs unlike 2D materials, the $E_{surface}$ would perform a non-uniform distribution inside the FND. Moreover, due to the surface of the FND generally lacked NV⁻ centers, we should control and manipulate the distributions of the electric-field intensities within FNDs by tuning the thickness of the capping SiO₂ layer of the Al/SiO₂ nanocavities to effectively enhance the fluorescence intensity of the FNDs.

Note and References:

^aDepartment of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan ^bInstitute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan ^cDepartment of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan ^dDepartment of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan

1. Y.-C. Lee, E.-Y. Wang, Y.-L. Liu, H.-L. Chen, Chem. Mater. 2015, 27, 876–884

^eCenter of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taiwan

2. Y.-C. Lee, Y.-C. Tseng, H.-L. Chen, ACS Photonics, 2017, 4, 93–105

2 | Nanoscale, 2018, 00, SI